Доказательство нерегулярности языков: лемма о разрастании — различия между версиями
(→Пример доказательства с использованием леммы) |
|||
Строка 8: | Строка 8: | ||
|proof= | |proof= | ||
[[Файл:Consp_lemma.png||left|240px|]] Пусть <tex>L</tex> — регулярный язык над алфавитом <tex>\Sigma</tex>. Поскольку [[Теорема Клини (совпадение классов автоматных и регулярных языков)|регулярный язык является автоматным]], то найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Пусть <tex>n</tex> — размер автомата. Докажем, что <tex>n</tex> удовлетворяет условию леммы. | [[Файл:Consp_lemma.png||left|240px|]] Пусть <tex>L</tex> — регулярный язык над алфавитом <tex>\Sigma</tex>. Поскольку [[Теорема Клини (совпадение классов автоматных и регулярных языков)|регулярный язык является автоматным]], то найдётся автомат <tex>A</tex>, допускающий язык <tex>L</tex>. Пусть <tex>n</tex> — размер автомата. Докажем, что <tex>n</tex> удовлетворяет условию леммы. | ||
− | <br/>Возьмём произвольное слово <tex>\omega</tex> длины не меньше <tex>n</tex> из языка <tex>L</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\varepsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение. Тогда, повторяя участок слова <tex>\omega</tex>, который отвечает за переход от <tex>u_i</tex> к <tex>u_j</tex>, получаем слово, допускаемое автоматом. То есть, если верно <tex>\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>, то тогда верно <tex>\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>. Тогда автомат <tex>A</tex> допускает слово <tex>xy^kz</tex>, следовательно <tex>xy^kz</tex> принадлежит регулярному языку <tex>L</tex>. | + | <br/>Возьмём произвольное слово <tex>\omega</tex> длины не меньше <tex>n</tex> из языка <tex>L</tex>. Рассмотрим переходы в автомате <tex>\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\rangle\vdash\dots\vdash\langle u_{l},\varepsilon\rangle, \: l\geqslant n</tex>. Так как <tex>l</tex> не меньше количества состояний в автомате <tex>n</tex>, то в переходах будет совпадение. Пусть <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение. Тогда, повторяя участок слова <tex>\omega</tex>, который отвечает за переход от <tex>u_i</tex> к <tex>u_j</tex>, получаем слово, допускаемое автоматом. То есть, если верно <tex>\langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>, то тогда верно <tex>\langle s, xy^kz\rangle \vdash^*\langle u_i, y^kz\rangle\vdash^*\langle u_j, y^{k-1}z\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \varepsilon\rangle</tex>. Тогда автомат <tex>A</tex> допускает слово <tex>xy^kz</tex>, следовательно <tex>xy^kz</tex> принадлежит регулярному языку <tex>L</tex>.<br /> |
+ | Наконец, поскольку <tex>u_i</tex> и <tex>u_j</tex> — первое совпадение, среди состояний <tex>s, u_1, \ldots, u_i, \ldots, u_{j-1}</tex> нет повторяющихся. Значит, выполняется требование <tex>|xy| \le n</tex>. | ||
}} | }} | ||
'''Замечание.''' Условие леммы не является достаточным для регулярности языка. ''(См. [[#Пример доказательства без использования леммы|пример 2]])'' | '''Замечание.''' Условие леммы не является достаточным для регулярности языка. ''(См. [[#Пример доказательства без использования леммы|пример 2]])'' | ||
Строка 14: | Строка 15: | ||
== Доказательства нерегулярности языков == | == Доказательства нерегулярности языков == | ||
Для доказательства нерегулярности языка можно использовать свойства регулярных и автоматных языков. | Для доказательства нерегулярности языка можно использовать свойства регулярных и автоматных языков. | ||
− | + | ||
+ | Часто удобно использовать отрицание леммы о разрастании. Пусть <tex>L</tex> — язык над алфавитом <tex>\Sigma</tex>. Если для любого натурального <tex>n</tex> найдётся такое слово <tex>\omega</tex> из данного языка, что его длина будет не меньше <tex> n</tex> и при любом разбиении на три слова <tex>x,y,z</tex> такие, что <tex>y</tex> непустое и длина <tex>xy</tex> не больше <tex>n</tex>, существует такое <tex>k</tex>, что <tex>xy^kz \notin L</tex>, то язык <tex>L</tex> нерегулярный. | ||
=== Пример доказательства с использованием леммы === | === Пример доказательства с использованием леммы === | ||
Рассмотрим язык правильных скобочных последовательностей. Для фиксированного <tex>n</tex> предъявляем слово <tex>\omega=(^n)^n</tex>. Пусть <tex>\omega</tex> как-то разбили на <tex>x, y, z</tex>. Так как <tex>|xy|\leqslant n</tex>, то <tex>y=(^b</tex>, где <tex>b > 0</tex>. Для любого такого разбиения берём <tex>k=2</tex> и получаем <tex>xy^kz=(^{n+b})^n</tex>, что не является правильной скобочной последовательностью. Значит, язык правильных скобочных последовательностей нерегулярен. | Рассмотрим язык правильных скобочных последовательностей. Для фиксированного <tex>n</tex> предъявляем слово <tex>\omega=(^n)^n</tex>. Пусть <tex>\omega</tex> как-то разбили на <tex>x, y, z</tex>. Так как <tex>|xy|\leqslant n</tex>, то <tex>y=(^b</tex>, где <tex>b > 0</tex>. Для любого такого разбиения берём <tex>k=2</tex> и получаем <tex>xy^kz=(^{n+b})^n</tex>, что не является правильной скобочной последовательностью. Значит, язык правильных скобочных последовательностей нерегулярен. |
Версия 21:12, 23 января 2012
Лемма о разрастании[1] — лемма, позволяющая во многих случаях проверить, является ли данный язык регулярным.
Содержание
Лемма (о разрастании, о накачке): |
Пусть регулярный язык над алфавитом , тогда существует такое , что для любого слова длины не меньше найдутся слова , для которых верно: и . — |
Доказательство: |
Пусть — регулярный язык над алфавитом . Поскольку регулярный язык является автоматным, то найдётся автомат , допускающий язык . Пусть — размер автомата. Докажем, что удовлетворяет условию леммы.
|
Замечание. Условие леммы не является достаточным для регулярности языка. (См. пример 2)
Доказательства нерегулярности языков
Для доказательства нерегулярности языка можно использовать свойства регулярных и автоматных языков.
Часто удобно использовать отрицание леммы о разрастании. Пусть
— язык над алфавитом . Если для любого натурального найдётся такое слово из данного языка, что его длина будет не меньше и при любом разбиении на три слова такие, что непустое и длина не больше , существует такое , что , то язык нерегулярный.Пример доказательства с использованием леммы
Рассмотрим язык правильных скобочных последовательностей. Для фиксированного
предъявляем слово . Пусть как-то разбили на . Так как , то , где . Для любого такого разбиения берём и получаем , что не является правильной скобочной последовательностью. Значит, язык правильных скобочных последовательностей нерегулярен.Пример доказательства без использования леммы
Докажем нерегулярность языка
. Заметим, что здесь условие леммы о накачке выполнено . Докажем нерегулярность языка с помощью свойств ДКА. Пусть для языка существует автомат c состояниями. Пусть после нулей на вход поступило единиц. При помощи рассуждений, аналогичных приведенным в доказательстве леммы, получаем, что с момента завершения считывания нулей до последнего считывания единицы автомат посетит состояние, т. е. хотя бы в одном из них он окажется дважды. Пусть при первом посещении этого состояния автомат считал единиц, при втором — . Поскольку принимается автоматом, а — не принимается, то при подаче автомату, находящемуся в этом состоянии, двоек, автомат, с одной стороны, должен оказаться в допускающем состоянии, с другой — в недопускающем.См. также
- Лемма о разрастании для КС-грамматик
- Интерпретация булевых формул с кванторами как игр для двух игроков
Примечания
- ↑ Лемму также часто называют леммой о накачке.
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.:Издательский дом «Вильямс», 2002. — С. 144. — ISBN 5-8459-0261-4