Счетчиковые машины, эквивалентность двухсчетчиковой машины МТ — различия между версиями
(→Эквивалентность двухстековой машины трёхсчётчикой машине) |
Vincent (обсуждение | вклад) |
||
| Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | <tex>k</tex>-счётчиковой машиной называется набор <tex>A=\langle\Sigma, Q, s\in Q, T \subset Q, \delta : Q \times \Sigma \cup \{\varepsilon\} \times \{0,1\}^k \rightarrow Q \times \{ -1, 0, 1\}^k \rangle</tex>, где | + | '''<tex>k</tex>-счётчиковой машиной''' называется набор <tex>A=\langle\Sigma, Q, s\in Q, T \subset Q, \delta : Q \times \Sigma \cup \{\varepsilon\} \times \{0,1\}^k \rightarrow Q \times \{ -1, 0, 1\}^k \rangle</tex>, где |
*<tex>\Sigma</tex> — входной алфавит на ленте; | *<tex>\Sigma</tex> — входной алфавит на ленте; | ||
*<tex>Q</tex> — множество состояний автомата; | *<tex>Q</tex> — множество состояний автомата; | ||
Версия 10:54, 24 января 2012
Содержание
Счётчиковые машины
| Определение: |
-счётчиковой машиной называется набор , где
Для каждого счётчика возможны четыре операции: увеличить на один, уменьшить на один, не изменять значение, проверить является ли значение счетчика нулём. Будем считать, что значение нулевых счётчиков уменьшать нельзя. |
По сути, -счётчиковая машина является -стековой машиной с односимвольным алфавитом.
Эквивалентность двухстековой машины трёхсчётчикой машине
| Лемма: |
Язык допускается двухстековой машиной тогда и только тогда, когда он допускается трёхсчётчиковой машиной. |
| Доказательство: |
|
Для доказательства необходимо показать, что двухстековая машина имитируется на трёхсчётчиковой. Пусть - стековый алфавит, . Пронумеруем символы алфавита от до . Тогда стек можно рассматривать как целое число в системе счисления с основанием . Будем использовать два счётчика для хранения состояний двух стеков, а третий счетчик будем использовать для временных вычислений. Для стека существует три типа элементарных операций: положить символ в стек, снять символ со стека, проверить верхний символ стека. Рассмотрим реализацию этих операция на трёхсчётчиковой машине.
Опишем реализацию арифметических операций с счётчиком, использованных при описании имитации работы двухстековой машины, при помощи двух счётчиков и управляющего автомата.
Таким образом, мы можем имитировать работу двухстековой машины на трёхсчётчиковой. Трёхсчётчиковая машина является частным случаем трёхстековой машины, а любая -стековая машина эквивалента по вычислительной мощности двухстековой, следовательно, любой язык, допускаемый трёхсчётчиковой машиной, допускается двухстековой. |
Эквивалентность -счётчиковой машины двухсчётчиковой
| Лемма: |
Для любого и для любой -счётчиковой машины существует эквивалентная ей двухсчётчиковая машина. |
| Доказательство: |
|
Для доказательства покажем, как имитировать -счётчиковую машины на двухсчётчиковой. Пусть — значения счётчиков -счётчиковой машины. Тогда состояние -счётчиковой машины можно охарактеризовать одним числом , где — -е простое число. Тогда любое состояние k-счётчиковой машины можно хранить на одном счётчике, и использовать второй счётчик для временных вычислений. Тогда элементарные операции на -счётчиковой машине реализуются следующим образом.
Операции умножения на константу, деления на константу и нахождения остатка от деления на константу значения счётчика при помощи одного вспомогательного счётчика описаны в предыдущей лемме. Таким образом, для любого и для любой -счётчиковой машины существует эквивалентная ей двухсчётчиковая машина. |
Эквивалентность двухсчётчиковой машины МТ
| Теорема: |
Для любого перечислимого языка существует двухсчётчиковая машина, которая распознает этот язык. |
| Доказательство: |
| Утверждение теоремы очевидно следует из двух описанных выше лемм, эквивалентности двухстековой машины машине Тьюринга и тезиса Тьюринга-Черча. |
Источники
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)