Пересечение окружностей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
Заданы две окружности разного радиуса точками центров <tex>(x_0;y_0)</tex>, <tex>(x_1;y_1)</tex> и радиусами <tex>r_0</tex> и <tex>r_1</tex> соответственно.
 
Заданы две окружности разного радиуса точками центров <tex>(x_0;y_0)</tex>, <tex>(x_1;y_1)</tex> и радиусами <tex>r_0</tex> и <tex>r_1</tex> соответственно.
 
Будем вычислять координаты искомых точек пересечения окружностей в новой системе координат, связанной с векторами <tex>\bar{a}</tex> и <tex>\bar{b}</tex>, которые изображены на рисунке. Искать соответственно будем в виду <tex>\alpha\bar{a}+\beta\bar{b}</tex>.
 
Будем вычислять координаты искомых точек пересечения окружностей в новой системе координат, связанной с векторами <tex>\bar{a}</tex> и <tex>\bar{b}</tex>, которые изображены на рисунке. Искать соответственно будем в виду <tex>\alpha\bar{a}+\beta\bar{b}</tex>.
 +
Для начала напишем, чему равен вектор <tex>\bar{a}=\begin{pmatrix}
 +
x_1-x_0\\
 +
y_1-y_0\\
 +
\end{pmatrix}</tex>, вектор <tex>\bar{b}</tex> перпендикулярен <tex>\bar{a}</tex>, следовательно равен <tex>\bar{b}=\begin{pmatrix}
 +
-y_1+y_0\\
 +
x_1-x_0\\
 +
\end{pmatrix}</tex>.
 +
[[Файл:circles.png‎|450px|thumb|Пересечение окружностей]]

Версия 03:52, 3 февраля 2012

Заданы две окружности разного радиуса точками центров [math](x_0;y_0)[/math], [math](x_1;y_1)[/math] и радиусами [math]r_0[/math] и [math]r_1[/math] соответственно. Будем вычислять координаты искомых точек пересечения окружностей в новой системе координат, связанной с векторами [math]\bar{a}[/math] и [math]\bar{b}[/math], которые изображены на рисунке. Искать соответственно будем в виду [math]\alpha\bar{a}+\beta\bar{b}[/math]. Для начала напишем, чему равен вектор [math]\bar{a}=\begin{pmatrix} x_1-x_0\\ y_1-y_0\\ \end{pmatrix}[/math], вектор [math]\bar{b}[/math] перпендикулярен [math]\bar{a}[/math], следовательно равен [math]\bar{b}=\begin{pmatrix} -y_1+y_0\\ x_1-x_0\\ \end{pmatrix}[/math].

Пересечение окружностей