Алгоритм масштабирования потока — различия между версиями
(→Оценка времени работы) |
(→Оценка времени работы) |
||
| Строка 27: | Строка 27: | ||
1 | 1 | ||
|statement= | |statement= | ||
| − | Максимальный поток в сети <tex> G </tex> ограничен сверху значением <tex> |f_k| + 2^k E </tex>, где <tex> |f_k| </tex> - значение потока | + | Максимальный поток в сети <tex> G </tex> ограничен сверху значением <tex> |f_k| + 2^k E </tex>, где <tex> |f_k| </tex> - значение потока при масштабе <tex> \Delta = 2^k </tex>. |
|proof= | |proof= | ||
Версия 02:01, 29 февраля 2012
Алгоритм
Пусть дана сеть , все ребра которой имеют целочисленную пропускную способность. Обозначим за максимальную пропускную способность: .
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом . Изначально положим .
На каждой итерации в дополняющей сети находим дополняющие пути с пропускной способностью не меньшей , увеличиваем поток вдоль них. Уменьшив масштаб в раза, переходим к следующей итерации.
Количество необходимых дополнений путей, основанных на кратчайших путях, может быть много больше количества дополнений, основанных на путях с высокой пропускной способностью.
Корректность алгоритма
Заметим, что при алгоритм вырождается в алгоритм Эдмондса-Карпа, вследствие чего является корректным.
Оценка времени работы
| Утверждение: | ||||||||||||||
Время работы алгоритма — . | ||||||||||||||
|
Пусть — множество масштабов. Тогда — количество итераций алгоритма.
| ||||||||||||||
Псевдокод
Max_Flow_By_Scaling(G,s,t)
while
do while в существует увеличивающий путь с пропускной способностью не меньшей
do
увеличить поток по рёбрам на
обновить
return