Стек — различия между версиями
Borisov (обсуждение | вклад) (→Работа стека) |
Borisov (обсуждение | вклад) |
||
Строка 33: | Строка 33: | ||
Как видно из псевдокода выше, все операции со стеком выполняются за $O(1)$.</wikitex> | Как видно из псевдокода выше, все операции со стеком выполняются за $O(1)$.</wikitex> | ||
+ | |||
+ | ==Реализация на списке== | ||
== См. также == | == См. также == |
Версия 14:41, 8 марта 2012
Определение
Стек (от англ. stack - стопка) — это динамическое множество, добавление и удаление элементов в котором происходит путём операций Push и Pop соответственно. Притом первым из стека удаляется элемент, который был помещен туда последним, то есть в стеке реализуется стратегия «последним вошел — первым вышел» (last-in, first-out — LIFO). Названия операций работы со стеком являются аллюзиями к стопкам (stacks) в реальной жизни как, например, удерживаемые пружиной стопки тарелок используемые в кафетериях - порядок вытаскивания (pop) тарелок из стопки обратен порядку их в неё помещению (push), и лишь (текущая) верхняя тарелка может быть извлечена.
Реализация на массиве
<wikitex>Операция вставки нового элемента применительно к стекам часто называется $push$ (запись в стек), а операция удаления — $pop$ (снятие со стека). Стек, способный вместить не более $n$ элементов, можно реализовать с помощью массива $S [1..n]$. Этот массив обладает атрибутом $S.top$, представляющим собой индекс последнего помещенного в стек элемента. Стек состоит из элементов $S[1..S.top]$, где $S[1]$ — элемент на дне стека, а $S[S.top]$ — элемент на его вершине.
Если $S.top = 0$, то стек не содержит ни одного элемента и является пустым $(empty)$. Протестировать стек на наличие в нем элементов можно с помощью операции-запроса $Stack$_$Empty$. Если элемент снимается с пустого стека, говорят, что он опустошается $(underflow)$, что обычно приводит к ошибке. Если значение $S.top$ больше $n$, то стек переполняется $(overflow)$. (В представленном ниже псевдокоде возможное переполнение во внимание не принимается.)
Каждую операцию над стеком можно легко реализовать несколькими строками кода:
Stack_Empty(S) { if S.top == 0 return true; else return false; } push(S,x) { S.top = S.top + 1; S[S.top] = x; } pop(S) { if Stack_Empty(S) return error "underflow"; else { S.top = S.top - 1; return S[S.top + 1]; }
Как видно из псевдокода выше, все операции со стеком выполняются за $O(1)$.</wikitex>
Реализация на списке
См. также
Ссылки
- Википедия
- Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 10
- T. H. Cormen. «Introduction to Algorithms» third edition, Chapter 10.1