Персистентный дек — различия между версиями
Shersh (обсуждение | вклад) |
Shersh (обсуждение | вклад) |
||
Строка 23: | Строка 23: | ||
Сам дек можно инициализировать напрямую, вызвав конструктор <tex>Deque(left, ~child, ~right)</tex>, или через шаблоны <tex>Deque<Pair<T_1, ~T_2>></tex>, тогда произойдёт следующее: | Сам дек можно инициализировать напрямую, вызвав конструктор <tex>Deque(left, ~child, ~right)</tex>, или через шаблоны <tex>Deque<Pair<T_1, ~T_2>></tex>, тогда произойдёт следующее: | ||
+ | |||
+ | |||
<code> | <code> | ||
Deque<Pair<<tex> T_1, ~T_2 </tex>>> { | Deque<Pair<<tex> T_1, ~T_2 </tex>>> { |
Версия 16:27, 10 марта 2012
Определение: |
Дек (англ. deque — double ended queue — очередь с двумя концами) — структура данных с двусторонним доступом к элементам, т.е. их можно удалять и добавлять как в начало, так и в конец дека. |
Кроме дека ещё существует структура данных, называемая steque, которая представляет собой объединение стека и очереди - элементы можно добавлять только в один конец, а извлекать — с обоих.
Эффективная реализация
Написать дек на массиве не представляет особого труда, зная уже, как работают стек и очередь. Далее будет приведена реализация операций добавления элемента и извлечения из одного конца дека за истинное время работы
Добавление и исключение из другого конца делается симметрично.Персистентный дек можно визуально представить как дерево, где каждый узел хранит пару - левый элемент и правый, а также ребёнка - ссылку на следующий дек. Только с каждым уровнем вложенности левый и правый элемент хранят в два раза больше объектов, чем на предыдущем уровне.
Тип
хранит пару элементов и типов и соответственно.
Pair<> { };
Сам дек можно инициализировать напрямую, вызвав конструктор
, или через шаблоны , тогда произойдёт следующее:
Deque<Pair<>> { left; right; Deque<Pair<Pair< >, Pair< >> child; };
Таким образом элементы с начала хранятся в левой ветке дерева, а с конца - в правой.
Наша структура данных персистентна, следовательно операция
push_front(x) if left ==// если левый ребенок не существует, то сделаем его новым элементом return Deque(x, child, right) else // иначе объединим его с новым элементов и попытаемся добавить в дек на следующем уровне return Deque( , child.push_front(Pair<x, left>), right)
Метод
pop_front() if left// если левый ребёнок не пуст, то возвращаем пару из него и нового дека без левого ребёнка return left, Deque( , child, right) else if child == // если левый ребёнок оказался пуст, и при этом ссылка на следующий дек отсутствует, // то вернём пару из правого ребёнка и абсолютно пустого дека return right, Deque( ) else /* * если два предыдущих условия оказались не выполнены, то мы рекурсивно вызываем метод pop_front() * и возвращённую пару "элемент-новый дек" сохраняем в переменные temp & newDeque * Рекурсивные вызовы прекратятся, как только левый ребёнок окажется существующим * или в деке будет отсутствовать ссылка на следующий дек */ temp, newDeque child.pop_front() if temp == /* * это возможно только тогда, когда в деке на максимальной глубине все элементы оказались пусты, * значит, мы сейчас на предпоследнем уровне, левый ребёнок пустой и child ссылается на абсолютно пустой дек, * поэтому возвращаем right текущего дека и пустой дек */ return right, Deque( ) else /* * если всё же temp не пуст, то надо вернуть первый элементы пары temp; * в качестве left нового дека надо поставить temp.last (на уровне ниже temp хранил * в два раза больше элементов, поэтому на текущем уровне temp.last будет соответствовать * требуемому количеству элементов); newDeque делаем child'ом * нового дека, а right текущего right'ом нового */ return temp.first, Deque(temp.last, newDeque, right)
Чтобы извлечь элемент, придётся спуститься не больше, чем на глубину дерева. Аналогично для добавления. Поэтому обе операции выполняются за