Префикс-функция — различия между версиями
Vasin (обсуждение | вклад) (→Псевдокод) |
Vasin (обсуждение | вклад) (→Оптимизация) |
||
Строка 37: | Строка 37: | ||
==Оптимизация== | ==Оптимизация== | ||
Внесем несколько важных замечаний: | Внесем несколько важных замечаний: | ||
− | *<tex>\pi(i + 1)</tex> превосходит <tex>\pi(i)</tex> не больше чем на <tex>1</tex>. Действительно, если <tex>\pi(i+1) > \pi(i) + 1</tex>, тогда <tex>\pi(i+1) - 1 > \pi(i)</tex>, получили противоречие. | + | *<tex>\pi(i + 1)</tex> превосходит <tex>\pi(i)</tex> не больше чем на <tex>1</tex>. Действительно, если <tex>\pi(i+1) > \pi(i) + 1</tex>, тогда <tex>\pi(i+1) - 1 > \pi(i)</tex>, значит в <tex>\pi(i)</tex> не максимально возможное значение, получили противоречие. |
*Избавимся от явных сравнений строк. Пусть мы вычислили <tex>\pi(i)</tex> и <tex>s[\pi(i) + 1] = s[i + 1]</tex>, тогда очевидно <tex>\pi(i+1) = \pi(i) + 1</tex>. Если же условие <tex>s[\pi(i) + 1] = s[i + 1]</tex> ложно, то хотелось бы найти наибольшую длину <tex> j</tex>, для которой верно <tex>\pi(i+1) = j + 1</tex>. Когда мы найдем такое <tex>j</tex> нам достаточно будет сравнить <tex>s[j + 1]</tex> и <tex>s[i + 1]</tex>, при их равенстве <tex>\pi(i+1) = j + 1</tex> будет верно. Будем искать наше <tex>j</tex> пока оно больше нуля, при равенстве нулю <tex>\pi(i+1) = 1</tex>, если <tex>s[i] = s[1]</tex>, иначе нулю. Общая схема алгоритма у нас есть, теперь нужно только научиться искать <tex>j</tex>. | *Избавимся от явных сравнений строк. Пусть мы вычислили <tex>\pi(i)</tex> и <tex>s[\pi(i) + 1] = s[i + 1]</tex>, тогда очевидно <tex>\pi(i+1) = \pi(i) + 1</tex>. Если же условие <tex>s[\pi(i) + 1] = s[i + 1]</tex> ложно, то хотелось бы найти наибольшую длину <tex> j</tex>, для которой верно <tex>\pi(i+1) = j + 1</tex>. Когда мы найдем такое <tex>j</tex> нам достаточно будет сравнить <tex>s[j + 1]</tex> и <tex>s[i + 1]</tex>, при их равенстве <tex>\pi(i+1) = j + 1</tex> будет верно. Будем искать наше <tex>j</tex> пока оно больше нуля, при равенстве нулю <tex>\pi(i+1) = 1</tex>, если <tex>s[i] = s[1]</tex>, иначе нулю. Общая схема алгоритма у нас есть, теперь нужно только научиться искать <tex>j</tex>. | ||
*Для поиска <tex>j</tex> нам стоит использовать равенство <tex>j = \pi(j)</tex>, когда <tex>s[j+1] = s[i+1]</tex> ложно, взяв за исходное <tex> j = \pi(i)</tex>, это позволит выбирать <tex>j</tex> по убыванию вплоть до нуля, так как очевидно, что <tex>\pi(x) \geq \pi(\pi(x))</tex> для любых <tex>x</tex>. | *Для поиска <tex>j</tex> нам стоит использовать равенство <tex>j = \pi(j)</tex>, когда <tex>s[j+1] = s[i+1]</tex> ложно, взяв за исходное <tex> j = \pi(i)</tex>, это позволит выбирать <tex>j</tex> по убыванию вплоть до нуля, так как очевидно, что <tex>\pi(x) \geq \pi(\pi(x))</tex> для любых <tex>x</tex>. |
Версия 18:20, 15 апреля 2012
Префикс-функция строки
— функция .Содержание
Алгоритм
Наивный алгоритм вычисляет префикс функцию непосредственно по определению, сравнивая префиксы и суффиксы строк.
Пример
Рассмотрим строку abcabcd, для которой значение префикс-функции равно
.Шаг | Строка | Значение функции |
---|---|---|
a | 0 | |
ab | 0 | |
abc | 0 | |
abca | 1 | |
abcab | 2 | |
abcabc | 3 | |
abcabcd | 0 |
Псевдокод
Prefix_function () = 0 for i = 1 to n for j = 1 to i - 1 if s[1..j] == s[i - j + 1..i] [i] = j return
Время работы
Всего
итераций цикла, на каждой из который происходит сравнение строк за , что дает в итоге .Оптимизация
Внесем несколько важных замечаний:
- превосходит не больше чем на . Действительно, если , тогда , значит в не максимально возможное значение, получили противоречие.
- Избавимся от явных сравнений строк. Пусть мы вычислили и , тогда очевидно . Если же условие ложно, то хотелось бы найти наибольшую длину , для которой верно . Когда мы найдем такое нам достаточно будет сравнить и , при их равенстве будет верно. Будем искать наше пока оно больше нуля, при равенстве нулю , если , иначе нулю. Общая схема алгоритма у нас есть, теперь нужно только научиться искать .
- Для поиска нам стоит использовать равенство , когда ложно, взяв за исходное , это позволит выбирать по убыванию вплоть до нуля, так как очевидно, что для любых .
Псевдокод
Prefix_function () = 0 for i = 2 to n j = [i - 1] while j > 0 && s[i] != s[j + 1] j = [j] if s[i] == s[j + 1] j++ [i] = j return
Время работы
В итоге мы получили алгоритм выполняющий
итераций за , что дает нам итоговое .Литература
Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.