Splay-дерево — различия между версиями
(→Эвристики) |
Lirik (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
'''Сплей-дерево (Splay-tree)''' {{---}} это двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году. | '''Сплей-дерево (Splay-tree)''' {{---}} это двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году. | ||
− | =Эвристики= | + | ==Эвристики== |
Для того, чтобы доступ к недавно найденным данным был быстрее, надо, чтобы эти данные находились ближе к корню. Этого мы можем добиться, используя различные эвристики: | Для того, чтобы доступ к недавно найденным данным был быстрее, надо, чтобы эти данные находились ближе к корню. Этого мы можем добиться, используя различные эвристики: | ||
* '''Move to Root''' {{---}} совершает повороты вокруг ребра <tex>(x, p)</tex>, где <tex>x</tex> - найденная вершина, <tex>p</tex> - ее предок, пока <tex>x</tex> не окажется корнем дерева. Однако можно построить такую последовательность операций, что амортизированное время доступа к вершине будет <tex> O(n) </tex>. | * '''Move to Root''' {{---}} совершает повороты вокруг ребра <tex>(x, p)</tex>, где <tex>x</tex> - найденная вершина, <tex>p</tex> - ее предок, пока <tex>x</tex> не окажется корнем дерева. Однако можно построить такую последовательность операций, что амортизированное время доступа к вершине будет <tex> O(n) </tex>. | ||
* '''Splay''' {{---}} также совершает повороты, но чередует различные виды поворотов, благодаря чему достигается логарифмическая амортизированная оценка. Она будет подробно описана ниже. | * '''Splay''' {{---}} также совершает повороты, но чередует различные виды поворотов, благодаря чему достигается логарифмическая амортизированная оценка. Она будет подробно описана ниже. | ||
− | =Операции со splay-деревом= | + | ==Операции со splay-деревом== |
− | ==Splay(Tree, x)== | + | ===Splay(Tree, x)=== |
"Splay" делится на 3 случая: | "Splay" делится на 3 случая: | ||
− | ===Zig=== | + | ====Zig==== |
Если <tex>p</tex> - корень дерева с сыном <tex>x</tex>, то совершаем один поворот вокруг ребра <tex>(x, p)</tex>, делая <tex>x</tex> корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина <tex>x</tex> была нечетной. | Если <tex>p</tex> - корень дерева с сыном <tex>x</tex>, то совершаем один поворот вокруг ребра <tex>(x, p)</tex>, делая <tex>x</tex> корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина <tex>x</tex> была нечетной. | ||
[[file:ZigSplay.gif|500px|Zig - поворот]] | [[file:ZigSplay.gif|500px|Zig - поворот]] | ||
− | ===Zig-Zig=== | + | ====Zig-Zig==== |
Если <tex>p</tex> - не корень дерева, а <tex>x</tex> и <tex>p</tex> - оба левые или оба правые дети, то делаем поворот ребра <tex>(p, g)</tex>, где <tex>g</tex> отец <tex>p</tex>, а затем поворот ребра <tex>(x, p)</tex>. | Если <tex>p</tex> - не корень дерева, а <tex>x</tex> и <tex>p</tex> - оба левые или оба правые дети, то делаем поворот ребра <tex>(p, g)</tex>, где <tex>g</tex> отец <tex>p</tex>, а затем поворот ребра <tex>(x, p)</tex>. | ||
[[file:ZigZigSplay.gif|500px|Zig-zig - поворот]] | [[file:ZigZigSplay.gif|500px|Zig-zig - поворот]] | ||
− | ===Zig-Zag=== | + | ====Zig-Zag==== |
Если <tex>p</tex> - не корень дерева и <tex>x</tex> - левый ребенок, а <tex>p</tex> - правый, или наоборот, то делаем поворот вокруг ребра <tex>(x, p)</tex>, а затем поворот нового ребра <tex>(x, g)</tex>, где <tex>g</tex> - бывший родитель <tex>p</tex>. | Если <tex>p</tex> - не корень дерева и <tex>x</tex> - левый ребенок, а <tex>p</tex> - правый, или наоборот, то делаем поворот вокруг ребра <tex>(x, p)</tex>, а затем поворот нового ребра <tex>(x, g)</tex>, где <tex>g</tex> - бывший родитель <tex>p</tex>. | ||
Строка 25: | Строка 25: | ||
Данная операция занимает <tex>O(d)</tex> времени, где <tex>d</tex> - длина пути от <tex>x</tex> до корня. В результате этой операции <tex>x</tex> становится корнем дерева, а расстояние до корня от каждой вершины сокращается примерно пополам, что связано с разделением случаев "zig-zig" и "zig-zag". | Данная операция занимает <tex>O(d)</tex> времени, где <tex>d</tex> - длина пути от <tex>x</tex> до корня. В результате этой операции <tex>x</tex> становится корнем дерева, а расстояние до корня от каждой вершины сокращается примерно пополам, что связано с разделением случаев "zig-zig" и "zig-zag". | ||
− | ==Find(Tree, x)== | + | ===Find(Tree, x)=== |
Эта операция выполняется как для обычного [http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0,_%D0%BD%D0%B0%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F бинарного дерева] , только после нее запускается операция Splay. | Эта операция выполняется как для обычного [http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%BF%D0%BE%D0%B8%D1%81%D0%BA%D0%B0,_%D0%BD%D0%B0%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D1%80%D0%B5%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F бинарного дерева] , только после нее запускается операция Splay. | ||
− | ==Merge(Tree1, Tree2)== | + | ===Merge(Tree1, Tree2)=== |
У нас есть два дерева <tex>Tree1</tex> и <tex>Tree2</tex>, причём подразумевается, что все элементы первого дерева меньше элементов второго. Запускаем Splay от самого большого элемента в дереве <tex>Tree1</tex> (пусть это элемент <tex>i</tex>). После этого корень <tex>Tree1</tex> содержит элемент <tex>i</tex>, при этом у него нет правого ребёнка. Делаем <tex>Tree2</tex> правым поддеревом <tex>i</tex> и возвращаем полученное дерево. | У нас есть два дерева <tex>Tree1</tex> и <tex>Tree2</tex>, причём подразумевается, что все элементы первого дерева меньше элементов второго. Запускаем Splay от самого большого элемента в дереве <tex>Tree1</tex> (пусть это элемент <tex>i</tex>). После этого корень <tex>Tree1</tex> содержит элемент <tex>i</tex>, при этом у него нет правого ребёнка. Делаем <tex>Tree2</tex> правым поддеревом <tex>i</tex> и возвращаем полученное дерево. | ||
− | ==Split(Tree, x)== | + | ===Split(Tree, x)=== |
Запускаем Splay от элемента <tex>x</tex> и возвращаем два дерева, полученные отсечением правого или левого поддерева от корня, в зависимости от того, содержит корень элемент больше или не больше, чем <tex>x</tex>. | Запускаем Splay от элемента <tex>x</tex> и возвращаем два дерева, полученные отсечением правого или левого поддерева от корня, в зависимости от того, содержит корень элемент больше или не больше, чем <tex>x</tex>. | ||
− | ==Add(Tree, x)== | + | ===Add(Tree, x)=== |
Запускаем Split(Tree, x), который нам возвращает деревья <tex>Tree1</tex> и <tex>Tree2</tex>, их подвешиваем к <tex>x</tex> как левое и правое поддеревья соответственно. | Запускаем Split(Tree, x), который нам возвращает деревья <tex>Tree1</tex> и <tex>Tree2</tex>, их подвешиваем к <tex>x</tex> как левое и правое поддеревья соответственно. | ||
− | ==Remove(Tree, x)== | + | ===Remove(Tree, x)=== |
Запускаем Splay от <tex>x</tex> элемента и возвращаем Merge от его детей. | Запускаем Splay от <tex>x</tex> элемента и возвращаем Merge от его детей. | ||
− | =Анализ операции splay= | + | ==Анализ операции splay== |
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>x</tex> — это величина, обозначаемая <tex>r(x)</tex> и равная <tex>\log_2 C(x)</tex>, где <tex>C(x)</tex> — количество вершин в поддереве с корнем в <tex>x</tex>. | Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>x</tex> — это величина, обозначаемая <tex>r(x)</tex> и равная <tex>\log_2 C(x)</tex>, где <tex>C(x)</tex> — количество вершин в поддереве с корнем в <tex>x</tex>. | ||
Строка 72: | Строка 72: | ||
}} | }} | ||
− | =Splay-деревья по неявному ключу= | + | ==Splay-деревья по неявному ключу== |
Для операции split нам необходимо хранить число вершин в поддереве. Это число может меняться вовремя операции splay, но при этом его легко поддерживать: мы точно знаем, куда переместятся поддеревья. Тогда после операции мы просто пересчитываем число элементов для 2 (zig) или 3 (zig-zig, zig-zag) вершин. Остальные операции аналогичны [http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B5%D0%BA%D0%B0%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%BF%D0%BE_%D0%BD%D0%B5%D1%8F%D0%B2%D0%BD%D0%BE%D0%BC%D1%83_%D0%BA%D0%BB%D1%8E%D1%87%D1%83 декартову дереву по неявному ключу]. | Для операции split нам необходимо хранить число вершин в поддереве. Это число может меняться вовремя операции splay, но при этом его легко поддерживать: мы точно знаем, куда переместятся поддеревья. Тогда после операции мы просто пересчитываем число элементов для 2 (zig) или 3 (zig-zig, zig-zag) вершин. Остальные операции аналогичны [http://neerc.ifmo.ru/wiki/index.php?title=%D0%94%D0%B5%D0%BA%D0%B0%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE_%D0%BF%D0%BE_%D0%BD%D0%B5%D1%8F%D0%B2%D0%BD%D0%BE%D0%BC%D1%83_%D0%BA%D0%BB%D1%8E%D1%87%D1%83 декартову дереву по неявному ключу]. | ||
− | =Литература= | + | ==Литература== |
*[http://en.wikipedia.org/wiki/Splay_tree Википедия - Splay tree] | *[http://en.wikipedia.org/wiki/Splay_tree Википедия - Splay tree] |
Версия 18:44, 20 апреля 2012
Сплей-дерево (Splay-tree) — это двоичное дерево поиска. Оно позволяет находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году.
Содержание
Эвристики
Для того, чтобы доступ к недавно найденным данным был быстрее, надо, чтобы эти данные находились ближе к корню. Этого мы можем добиться, используя различные эвристики:
- Move to Root — совершает повороты вокруг ребра , где - найденная вершина, - ее предок, пока не окажется корнем дерева. Однако можно построить такую последовательность операций, что амортизированное время доступа к вершине будет .
- Splay — также совершает повороты, но чередует различные виды поворотов, благодаря чему достигается логарифмическая амортизированная оценка. Она будет подробно описана ниже.
Операции со splay-деревом
Splay(Tree, x)
"Splay" делится на 3 случая:
Zig
Если
- корень дерева с сыном , то совершаем один поворот вокруг ребра , делая корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина была нечетной.Zig-Zig
Если
- не корень дерева, а и - оба левые или оба правые дети, то делаем поворот ребра , где отец , а затем поворот ребра .Zig-Zag
Если
- не корень дерева и - левый ребенок, а - правый, или наоборот, то делаем поворот вокруг ребра , а затем поворот нового ребра , где - бывший родитель .Данная операция занимает
времени, где - длина пути от до корня. В результате этой операции становится корнем дерева, а расстояние до корня от каждой вершины сокращается примерно пополам, что связано с разделением случаев "zig-zig" и "zig-zag".Find(Tree, x)
Эта операция выполняется как для обычного бинарного дерева , только после нее запускается операция Splay.
Merge(Tree1, Tree2)
У нас есть два дерева
и , причём подразумевается, что все элементы первого дерева меньше элементов второго. Запускаем Splay от самого большого элемента в дереве (пусть это элемент ). После этого корень содержит элемент , при этом у него нет правого ребёнка. Делаем правым поддеревом и возвращаем полученное дерево.Split(Tree, x)
Запускаем Splay от элемента
и возвращаем два дерева, полученные отсечением правого или левого поддерева от корня, в зависимости от того, содержит корень элемент больше или не больше, чем .Add(Tree, x)
Запускаем Split(Tree, x), который нам возвращает деревья
и , их подвешиваем к как левое и правое поддеревья соответственно.Remove(Tree, x)
Запускаем Splay от
элемента и возвращаем Merge от его детей.Анализ операции splay
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины
— это величина, обозначаемая и равная , где — количество вершин в поддереве с корнем в .Лемма: |
Амортизированное время операции splay вершины в дереве с корнем не превосходит |
Доказательство: |
Проанализируем каждый шаг операции splay. Пусть и — ранги вершин после шага и до него соответственно, — предок вершины , а — предок (если есть).Разберём случаи в зависимости от типа шага: Zig. Поскольку выполнен один поворот, то время амортизированное время выполнения шага (поскольку только у вершин и меняется ранг). Ранг вершины уменьшился, поэтому . Ранг вершины увеличился, поэтому . Следовательно, .Zig-zig. Выполнено два поворота, амортизированное время выполнения шага . Поскольку после поворотов поддерево с корнем в будет содержать все вершины, которые были в поддереве с корнем в (и только их), поэтому . Используя это равенство, получаем: , поскольку .Далее, так как , получаем, что .Мы утверждаем, что эта сумма не превосходит , то есть, что . Преобразуем полученное выражение следующим образом: .Из рисунка видно, что , значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов . При произведение по неравенству между средними не превышает . А поскольку логарифм - функция возрастающая, то , что и является требуемым неравенством.Zig-zag. Выполнено два поворота, амортизированное время выполнения шага . Поскольку , то . Далее, так как , то .Мы утверждаем, что эта сумма не превосходит , то есть, что . Но, поскольку - аналогично доказанному ранее, что и требовалось доказать.Итого, получаем, что амортизированное время шага zig-zag не превосходит Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить . , поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом). |
Splay-деревья по неявному ключу
Для операции split нам необходимо хранить число вершин в поддереве. Это число может меняться вовремя операции splay, но при этом его легко поддерживать: мы точно знаем, куда переместятся поддеревья. Тогда после операции мы просто пересчитываем число элементов для 2 (zig) или 3 (zig-zig, zig-zag) вершин. Остальные операции аналогичны декартову дереву по неявному ключу.