Уравнение Пелля — различия между версиями
Строка 20: | Строка 20: | ||
Если <tex>~|{b2\epsilon} - {b1\epsilon}|\leqslant \frac{1}{N+1}</tex>, где <tex>1\leqslant b1 < b2 \leqslant N</tex>, то <tex>~|(b2\epsilon-[b2\epsilon]) - (b1\epsilon-[b1\epsilon])| \leqslant \frac{1}{N+1}</tex>. Так что берём <tex>b = b2-b1</tex> и <tex>a = [b2\epsilon]-[b1\epsilon] </tex>. Два других случая очевидны. | Если <tex>~|{b2\epsilon} - {b1\epsilon}|\leqslant \frac{1}{N+1}</tex>, где <tex>1\leqslant b1 < b2 \leqslant N</tex>, то <tex>~|(b2\epsilon-[b2\epsilon]) - (b1\epsilon-[b1\epsilon])| \leqslant \frac{1}{N+1}</tex>. Так что берём <tex>b = b2-b1</tex> и <tex>a = [b2\epsilon]-[b1\epsilon] </tex>. Два других случая очевидны. | ||
+ | }} | ||
+ | |||
+ | {Теорема | ||
+ | |statement= | ||
+ | Уравнение Пелля имеет нетривиальное решение. | ||
}} | }} |
Версия 21:39, 29 июня 2010
Эта статья находится в разработке!
Определение: |
Уравнение вида | , где не является квадратом, называется уравнением Пелля
Теорема: |
Любое решение уравнения Пелля - подходящая дробь для . |
Доказательство: |
Рассматриваем , остальные корни получатся из симметрии. Так как , то . . Следовательно . Разделим обе части на получим : . Значит по теореме о приближении является подходящей дробью для . |
Лемма: |
Для любого вещественного числа и натурального существует такое целое число и натуральное число , что и |
Доказательство: |
Рассмотрим числа 0 и 1, а также дробные части чисел Если . Если все расстояния между этими числами было больше , то приходим к противоречию. Значит какое-то из расстояний не превосходит . , где , то . Так что берём и . Два других случая очевидны. |
{Теорема |statement= Уравнение Пелля имеет нетривиальное решение. }}