Участник:Muravyov — различия между версиями
Muravyov (обсуждение | вклад) (→Примитивный алгоритм) |
Muravyov (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Триангуляция полигона ''' — декомпозиция многоугольника <tex>P</tex> на множество треугольников, внутренние области которых попарно не пересекаются и объединение которых в совокупности составляет <tex>P</tex>. В строгом смысле слова, | + | '''Триангуляция полигона ''' — декомпозиция многоугольника <tex>P</tex> на множество треугольников, внутренние области которых попарно не пересекаются и объединение которых в совокупности составляет <tex>P</tex>. В строгом смысле слова, вершины этих треугольников должны совпадать с вершинами исходного многоугольника. Триангуляция любого многоугольника не единственна. В этом можно убедиться из примера на рисунке. |
== Постановка задачи == | == Постановка задачи == | ||
Строка 30: | Строка 30: | ||
=== Монотонный метод === | === Монотонный метод === | ||
+ | |||
+ | {{Определение | ||
+ | |definition= | ||
+ | Простой многоугольник называется '''монотонным относительно прямой <tex>l</tex>''' на <tex>E</tex>. | ||
+ | }} | ||
=== Ушной метод === | === Ушной метод === | ||
Более эффективным я | Более эффективным я |
Версия 17:28, 29 апреля 2012
Триангуляция полигона — декомпозиция многоугольника
на множество треугольников, внутренние области которых попарно не пересекаются и объединение которых в совокупности составляет . В строгом смысле слова, вершины этих треугольников должны совпадать с вершинами исходного многоугольника. Триангуляция любого многоугольника не единственна. В этом можно убедиться из примера на рисунке.Содержание
Постановка задачи
На плоскости задан произвольный многоугольник. Стороны многоугольника не пересекаются. Требуется найти его триангуляцию.
Теорема о существовании трингуляции
Простым многоугольником является фигура, ограниченная одной замкнутой ломаной, стороны которой не пересекаются. Таким образом, случаи многоугольников с дырками в теореме исключаются.
Теорема (О существовании триангуляции многоугольника): |
У любого простого -вершинного многоугольника всегда существует триангуляция, причём количество треугольников в ней независимо от самой триангуляции. |
Доказательство: |
Доказательство ведётся индуктивно по Докажем, что триангуляция . При теорема тривиальна. Рассмотрим случай при и предположим, что теорема выполняется при всех . Докажем существование диагонали в многоугольнике . Возьмём самую левую вершину многоугольника и две смежных с ней вершины и . Если отрезок принадлежит внутренней области — мы нашли диагональ. В противном случае, во внутренней области треугольника или на самом отрезке содержится одна или несколько вершин . Выберем самую наиболее далеко отстоящую от вершину . Отрезок, соединяющий и не может пересекать сторон , поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от , чем . Это противоречит условию выбора . В итоге получаем, что — диагональ. Любая диагональ делит на два многоугольника и . За и обозначим количество вершин в и соответственно. и , поэтому по предположению индукции у и существует триангуляция, следовательно и у она существует. состоит из треугольников. Рассмотрим произвольную диагональ в триангуляции . делит на два многоугольника и , количество вершин в которых и соответственно. Каждая вершина встречается только в одном из двух многоугольников и , за исключением тех, которые являются концами , поэтому справедливо следующее: . По индукции, любая триангуляция состоит из треугольников, откуда следует, что . состоит из треугольников. |
Способы нахождения триангуляции
Примитивный алгоритм
В общем случае в произвольном
-угольнике всего возможных вариантов построения диагоналей. За проверим каждый из них. Для этого выясним:- пересекает ли данная диагональ многоугольник — находится за линейное время проверкой по всем рёбрам
- принадлежит ли диагональ внутренней область многоугольника.
Чтобы построить триангуляцию нужно найти
диагоналей. В результате получается оценка .Для некоторых классов многоугольников предыдущую оценку можно улучшить. Например, если многоугольник выпуклый, то достаточно лишь выбирать одну его вершину и соединять со всеми остальными, кроме его соседей. В итоге оценка
.Монотонный метод
Определение: |
Простой многоугольник называется монотонным относительно прямой | на .
Ушной метод
Более эффективным я