Теорема Сэвича. Совпадение классов NPS и PS — различия между версиями
Leugenea (обсуждение | вклад) м (→Связь класса PS с другими классами теории сложности) |
|||
| Строка 16: | Строка 16: | ||
|statement = | |statement = | ||
<tex>\mathrm{P} \subseteq \mathrm{PS}</tex>. | <tex>\mathrm{P} \subseteq \mathrm{PS}</tex>. | ||
| − | |proof = Рассмотрим любой язык <tex>L</tex> из <tex>\mathrm{P}</tex>. Так как <tex>L \in \mathrm{P}</tex>, то существует машина Тьюринга <tex>m</tex>, распознающая <tex>L</tex> за полиномиальное время. Это значит, что <tex>m</tex> не | + | |proof = Рассмотрим любой язык <tex>L</tex> из <tex>\mathrm{P}</tex>. Так как <tex>L \in \mathrm{P}</tex>, то существует машина Тьюринга <tex>m</tex>, распознающая <tex>L</tex> за полиномиальное время. Это значит, что <tex>m</tex> не сможет использовать более, чем полиномиальное количество памяти, следовательно <tex> L \in \mathrm{PS}</tex>. |
}} | }} | ||
| Строка 22: | Строка 22: | ||
|statement = | |statement = | ||
<tex>\mathrm{NP} \subseteq \mathrm{PS}</tex>. | <tex>\mathrm{NP} \subseteq \mathrm{PS}</tex>. | ||
| − | |proof = Рассмотрим любой язык <tex>L</tex> из <tex>\mathrm{NP}</tex>. Так как <tex>L \in \mathrm{NP}</tex>, то существует программа-верификатор <tex>R(x,y)</tex>, что для каждого слова из <tex>L</tex> (и только для них) существует сертификат <tex>y</tex> полиномиальной длины | + | |proof = Рассмотрим любой язык <tex>L</tex> из <tex>\mathrm{NP}</tex>. Так как <tex>L \in \mathrm{NP}</tex>, то существует программа-верификатор <tex>R(x,y)</tex>, что для каждого слова из <tex>L</tex> (и только для них) существует такой сертификат <tex>y</tex> полиномиальной длины, что <tex>R</tex> допускает слово и сертификат. Тогда, чтобы проверить принадлежность слова языку, мы можем перебрать все сертификаты полиномиальной длины. Для этого необходим полиномиальный размер памяти. Из этого следует, что <tex>L \in \mathrm{PS}</tex>. |
}} | }} | ||
Версия 20:12, 13 мая 2012
Содержание
Класс PS
Определение
| Определение: |
| Класс — класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера. |
| Определение: |
| Класс — класс языков, разрешимых на недетерминированной машине Тьюринга с использованием памяти полиномиального размера. |
Связь класса PS с другими классами теории сложности
| Теорема: |
. |
| Доказательство: |
| Рассмотрим любой язык из . Так как , то существует машина Тьюринга , распознающая за полиномиальное время. Это значит, что не сможет использовать более, чем полиномиальное количество памяти, следовательно . |
| Теорема: |
. |
| Доказательство: |
| Рассмотрим любой язык из . Так как , то существует программа-верификатор , что для каждого слова из (и только для них) существует такой сертификат полиномиальной длины, что допускает слово и сертификат. Тогда, чтобы проверить принадлежность слова языку, мы можем перебрать все сертификаты полиномиальной длины. Для этого необходим полиномиальный размер памяти. Из этого следует, что . |
Теорема Сэвича
| Теорема: |
Для любой справедливо: . То есть, если недетерминированная машина Тьюринга может решить проблему используя памяти, то существует детерминированная машина Тьюринга, которая решает эту же проблему, используя не больше, чем памяти. |
| Доказательство: |
|
Рассмотрим машину Тьюринга с входной и рабочей лентой. Ее конфигурацию можно закодировать так: закодировать позицию и содержание рабочей ленты (займет памяти), позицию входной ленты (займет памяти). Так как , то размер конфигурации составит . Пусть . Тогда существует недетерминированная машина Тьюринга, распознающая этот язык. Reach (I, J, k)
if (k = 0)
return (I J) or (I = J);
else
for (Y) // перебор промежуточных конфигураций
if Reach(I, Y, k-1) and Reach(Y, J, k-1)
return true;
return false;
Эта функция имеет глубину рекурсии , на каждом уровне рекурсии использует памяти для хранения текущих конфигураций. Тогда всего функция использует памяти. Рассмотрим машину Тьюринга , распознающую язык . Эта машина может иметь конфигураций. Объясняется это следующим образом. Пусть имеет состояний и символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте . Головка на входной ленте может быть в одной из n позиций и в одной из на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает . Рассмотрим функцию, которая по заданному слову проверяет его принадлежность к языку : Check (x, L)
for (T) // перебор конфигураций, которые содержат допускающие состояния
if Reach(S, T, )
return true;
return false;
Если слово принадлежит языку, то оно будет допущено, так как будут рассмотрены все возможные пути допуска. Это обеспечивается указанной нам глубиной рекурсии для функции . И если слово не допускается за шагов (количество всех возможных конфигураций), то оно уже гарантированно не может быть допущено. В итоге функция имеет глубину рекурсии , на каждом уровне рекурсии используется памяти. Тогда всего эта функция использует памяти. |
Следствие
Вывод
.
Известно, что . Так что хотя бы одно из рассмотренных включений — строгое, но неизвестно, какое. Принято считать, что все приведенные выше включения — строгие.
Источники
- Michael Sipser. Introduction to the theory of computation.