Теорема Сэвича. Совпадение классов NPS и PS — различия между версиями
Leugenea (обсуждение | вклад) м (→Связь класса PS с другими классами теории сложности) |
Leugenea (обсуждение | вклад) м (→Теорема Сэвича) |
||
Строка 37: | Строка 37: | ||
Пусть <tex>L \in \mathrm{NSPACE}(f(n))</tex>. Тогда существует недетерминированная машина Тьюринга, распознающая этот язык.<br> | Пусть <tex>L \in \mathrm{NSPACE}(f(n))</tex>. Тогда существует недетерминированная машина Тьюринга, распознающая этот язык.<br> | ||
− | Рассмотрим функцию <tex>Reach(I, J, k)</tex>, вычисляющую возможность перехода из конфигурации <tex>I</tex> в конфигурацию <tex>J</tex> за | + | Рассмотрим вспомогательную функцию <tex>Reach(I, J, k)</tex>, вычисляющую возможность перехода из конфигурации <tex>I</tex> в конфигурацию <tex>J</tex> за не более, чем <tex>2^k</tex> переходов: |
'''Reach''' (I, J, k) | '''Reach''' (I, J, k) | ||
Строка 48: | Строка 48: | ||
'''return''' false; | '''return''' false; | ||
− | Эта функция имеет глубину рекурсии <tex>O(k)</tex>, на каждом уровне рекурсии использует <tex>O(f(n))</tex> памяти для хранения текущих конфигураций | + | Эта функция имеет глубину рекурсии <tex>O(k)</tex>, на каждом уровне рекурсии использует <tex>O(f(n))</tex> памяти для хранения текущих конфигураций. |
− | Рассмотрим машину Тьюринга <tex> | + | Рассмотрим машину Тьюринга <tex>m</tex>, распознающую язык <tex>L</tex>. Эта машина может иметь <tex>2^{df(n)}</tex> конфигураций. Объясняется это следующим образом. Пусть <tex>m</tex> имеет <tex>c</tex> состояний и <tex>g</tex> символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте <tex>g^{f(n)}</tex>. Головка на входной ленте может быть в одной из n позиций и в одной из <tex>f(n)</tex> на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает <tex>cnf(n)g^{f(n)}=2^{\log c + \log n + \log (f(n)) + f(n) \log g}=2^{O(f(n))}</tex>. |
Рассмотрим функцию, которая по заданному слову <tex>x</tex> проверяет его принадлежность к языку <tex>L</tex>: | Рассмотрим функцию, которая по заданному слову <tex>x</tex> проверяет его принадлежность к языку <tex>L</tex>: |
Версия 20:35, 13 мая 2012
Содержание
Класс PS
Определение
Определение: |
Класс | — класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера.
Определение: |
Класс | — класс языков, разрешимых на недетерминированной машине Тьюринга с использованием памяти полиномиального размера.
Связь класса PS с другими классами теории сложности
Теорема: |
. |
Доказательство: |
Рассмотрим любой язык | из . Так как , то существует машина Тьюринга , распознающая за полиномиальное время. Это значит, что не сможет использовать более, чем полиномиальное количество памяти, следовательно .
Теорема: |
. |
Доказательство: |
Рассмотрим любой язык | из . Так как , то существует программа-верификатор , что для каждого слова из (и только для них) существует такой сертификат полиномиальной длины, что допускает слово и сертификат. Тогда, чтобы проверить принадлежность слова языку, мы можем перебрать все сертификаты полиномиальной длины. Для этого необходим полиномиальный размер памяти. Из этого следует, что .
Теорема Сэвича
Теорема: |
Для любой справедливо: . То есть, если недетерминированная машина Тьюринга может решить проблему используя памяти, то существует детерминированная машина Тьюринга, которая решает эту же проблему, используя не больше, чем памяти. |
Доказательство: |
Рассмотрим машину Тьюринга с входной и рабочей лентой. Ее конфигурацию можно закодировать так: закодировать позицию и содержание рабочей ленты (займет памяти), позицию входной ленты (займет памяти). Так как , то размер конфигурации составит .Пусть Reach (I, J, k)
if (k = 0)
return (I
J) or (I = J);
else
for (Y) // перебор промежуточных конфигураций
if Reach(I, Y, k-1) and Reach(Y, J, k-1)
return true;
return false;
Эта функция имеет глубину рекурсии , на каждом уровне рекурсии использует памяти для хранения текущих конфигураций.Рассмотрим машину Тьюринга , распознающую язык . Эта машина может иметь конфигураций. Объясняется это следующим образом. Пусть имеет состояний и символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте . Головка на входной ленте может быть в одной из n позиций и в одной из на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает .Рассмотрим функцию, которая по заданному слову проверяет его принадлежность к языку : Check (x, L)
for (T) // перебор конфигураций, которые содержат допускающие состояния
if Reach(S, T,
)
return true;
return false;
Если слово принадлежит языку, то оно будет допущено, так как будут рассмотрены все возможные пути допуска. Это обеспечивается указанной нам глубиной рекурсии для функции В итоге функция . И если слово не допускается за шагов (количество всех возможных конфигураций), то оно уже гарантированно не может быть допущено. имеет глубину рекурсии , на каждом уровне рекурсии используется памяти. Тогда всего эта функция использует памяти. |
Следствие
Вывод
.
Известно, что
. Так что хотя бы одно из рассмотренных включений — строгое, но неизвестно, какое. Принято считать, что все приведенные выше включения — строгие.
Источники
- Michael Sipser. Introduction to the theory of computation.