QpmtnriLmax — различия между версиями
Строка 18: | Строка 18: | ||
Далее мы расширяем сеть, показанную на рисунке 1 следующим образом: | Далее мы расширяем сеть, показанную на рисунке 1 следующим образом: | ||
− | <tex>I_K</tex> - произвольный интервал узел на рисунке, обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>. | + | <tex>I_K</tex> - произвольный интервал узел на рисунке, обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>. Тогда замененная нами подсеть определяется как <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex>, которая показана на рисунке 2.1; Расширение сети показано на рисунке 2.2. |
− | |||
− | Тогда замененная нами подсеть определяется как <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex>, которая показана на рисунке | ||
Cчитаем, что машины индексируются в порядке невозрастания скоростей <tex> s_1 \ge s_2 \ge . . . \ge s_m </tex>, кроме того <tex>s_{m+1} = 0</tex>. | Cчитаем, что машины индексируются в порядке невозрастания скоростей <tex> s_1 \ge s_2 \ge . . . \ge s_m </tex>, кроме того <tex>s_{m+1} = 0</tex>. | ||
− | Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. | + | Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> с емкостью <tex> j(s_j - s_{j+1}) T_K </tex> и для всех <tex>ν = 1,. . . , s</tex> и <tex>j = 1,. . ., m</tex> существует дуга из <tex>J_{i_ν}</tex> в <tex>(K, J)</tex> с емкостью <tex> (s_j - s_{j+1}) T_K </tex>. |
− | |||
− | При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> | ||
− | Для каждого <tex>I_K</tex> у нас есть такие расширения. Кроме того, мы сохраняем дуги | + | Для каждого <tex>I_K</tex> у нас есть такие расширения. Кроме того, мы сохраняем дуги из <tex>s</tex> в <tex>J_i</tex> емкостью <tex>p_i</tex> и дуги из <tex>I_K</tex> в <tex>t</tex> емкостью <tex>S_mT_K</tex> (см. рисунок 1). |
{{Теорема | {{Теорема | ||
Строка 39: | Строка 35: | ||
==Время работы== | ==Время работы== | ||
[[Файл:Figure_5.9.a.png|200px|thumb|right|Рис. 2.1]] | [[Файл:Figure_5.9.a.png|200px|thumb|right|Рис. 2.1]] | ||
− | + | Из-за максимального потока в расширенной сети могут быть рассчитаны в <tex>O (m n^3)</tex> шагов, возможность проверки может быть сделано с такой же сложности. Для решения задачи <tex>Q|pmtn; r_{i}|L_{max}</tex> мы используем бинарный поиск. Получается алгоритм со сложностью <tex>O (mn^3(log(n) + log (\max\limits_{i=1}^{n} p_i)) </tex>, потому что <tex>L_{max}</tex>, ограничен <tex>n \max\limits_{i=1}^{n}p_i</tex>, при <tex>s_1 = 1</tex>. | |
− | Из-за максимального потока в расширенной сети могут быть рассчитаны в <tex>O (m n^3)</tex> шагов, возможность проверки может быть сделано с такой же сложности. | ||
− | + | <tex>Q | pmtn; ri | Cmax</tex> представляет собой частный случай <tex>Q | pmtn; ri | Lmax</tex>, и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, and Rinnooy Kan разработали алгоритм работающий за <tex> O(n log(n) + mn) </tex> специально для этого случая. | |
− | + | {{Утверждение | |
− | + | |statement= Задача <tex>Q | pmtn | Lmax</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов. | |
− | + | |proof= | |
− | + | Решение <tex>Q | pmtn; ri | Cmax</tex> эквивалентно нахождению наименьшего <tex>T \ge 0</tex>, такого, что задача с "временными окнами" <tex>[r_i, T] (i = 1, . . . , n)</tex> имеет решение. | |
− | |||
− | |||
− | Задача <tex>Q | pmtn | Lmax</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов. | ||
− | |||
− | |||
− | <tex>T \ge 0</tex>, что | ||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | С другой стороны, решение <tex>Q | pmtn | Lmax</tex> эквивалентно нахождению такого наименьшего <tex>T \ge 0</tex>, такого, что задача с "временными окнами" <tex>[0, d_i + T]</tex> или с "временными окнами" <tex>[−T, d_i]</tex> имеет решение. | ||
+ | }} | ||
+ | [[Файл:Figure_5.9.b.png|500px|thumb|right|Рис. 2.2]] | ||
Таким образом, задачи <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax</tex> симметричны. | Таким образом, задачи <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax</tex> симметричны. |
Версия 19:41, 22 мая 2012
Эта статья находится в разработке!
Постановка задачи
Рассмотрим задачу нахождения расписания со следующим свойством:
- Каждое задание имеет своё времени выпуска
и срок завершения(дедлайн) .Алгоритм решения
Применим бинарный поиск для общего решения задачи. Сведем задачу к поиску потока сети.
Пусть
упорядоченная последовательности всех значений и .Также определим
для .Далее мы расширяем сеть, показанную на рисунке 1 следующим образом:
- произвольный интервал узел на рисунке, обозначим через набор предшественников узла . Тогда замененная нами подсеть определяется как , которая показана на рисунке 2.1; Расширение сети показано на рисунке 2.2.
Cчитаем, что машины индексируются в порядке невозрастания скоростей
, кроме того .Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с емкостью и для всех и существует дуга из в с емкостью .Для каждого
у нас есть такие расширения. Кроме того, мы сохраняем дуги из в емкостью и дуги из в емкостью (см. рисунок 1).Теорема: |
Следующие свойства эквивалентны:
(А) Существует допустимое расписание. (Б) В расширенной сети существует поток от s до t со значением |
Время работы
Из-за максимального потока в расширенной сети могут быть рассчитаны в
шагов, возможность проверки может быть сделано с такой же сложности. Для решения задачи мы используем бинарный поиск. Получается алгоритм со сложностью , потому что , ограничен , при .представляет собой частный случай , и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, and Rinnooy Kan разработали алгоритм работающий за специально для этого случая.
Утверждение: |
Задача может быть решена за шагов. |
Решение С другой стороны, решение эквивалентно нахождению наименьшего , такого, что задача с "временными окнами" имеет решение. эквивалентно нахождению такого наименьшего , такого, что задача с "временными окнами" или с "временными окнами" имеет решение. |
Таким образом, задачи
и симметричны.