Изменения

Перейти к: навигация, поиск

Схемная сложность и класс P/poly

55 байт убрано, 21:39, 31 мая 2012
м
Теоремы
<tex> \mathrm{PSIZE} = \mathrm{P/poly} </tex>.
|proof=
<tex> \Rightarrow </tex>. <br>
Докажем, что <tex> \mathrm{PSIZE} \subset \mathrm{P/poly} </tex>. <br>
Пусть <tex> L \in \mathrm{PSIZE} </tex>, <tex> x </tex> {{---}} входная строка. Тогда для <tex> L </tex> существуют логические схемы <tex> C_0, C_1, .., C_n, .. </tex>. В качестве подсказки для x предоставим логическую схему <tex> C_{|x|} </tex>. Программа <tex> p </tex> получает на вход <tex> x </tex> и <tex> C_{|x|} </tex> и возвращает значение, вычисляемое <tex> C_{|x|} </tex> для входа <tex> x </tex>. Запишем программу
Логическая схема <tex> C_{|x|} </tex> имеет полиномиальный размер. Оба условия для <tex> \mathrm{P/poly} </tex> выполнены, <tex> \mathrm{PSIZE} \subset \mathrm{P/poly} </tex>. <br>
<tex>\Leftarrow </tex>. <br>
Докажем, что <tex> \mathrm{P/poly} \subset \mathrm{PSIZE} </tex>. <br>
Пусть <tex> L \in \mathrm{P/poly} </tex>, <tex> x </tex> {{---}} входная строка. Тогда для <tex> L </tex> существуют подсказки <tex> a_0, a_1, .. , a_n, .. </tex>. Программа <tex> p </tex> по входу <tex> x </tex> и подсказке <tex> a_{|x|} </tex> определяет принадлежность <tex> x </tex> языку <tex> L </tex>. Зафиксируем длину входной строки <tex> x </tex> как <tex> n </tex>. Теперь запишем <tex> p </tex> в виде логической схемы <tex> C_m </tex> ( <tex> m = n + |a_n| </tex>), которая принимает на вход слова длины <tex> n </tex> и подсказку <tex> a_n </tex>. Полученная схема будет полиномиального размера. Зашьем подсказку в самой схеме, то есть впишем в нее значения битов подсказки. Получим схему <tex> C_n </tex> полиномиального размера, принимающую слова длины <tex> n </tex> и определяющую их принадлежность языку <tex> L </tex>. Такие схемы можно получить для любой длины входа. Значит, <tex> \mathrm{P/poly} \subset \mathrm{PSIZE} </tex>.
editor
177
правок

Навигация