Многомерное дерево отрезков — различия между версиями
Строка 26: | Строка 26: | ||
==Запрос== | ==Запрос== | ||
+ | Рассмотрим отличия реализации многомерного и одномерного случаев. На самом деле, отличаются реализации только в двух местах. Во-первых, если рассматриваемый отрезок совпадает с необходимым, то в одномерном случае функция просто возвращает число, которое находится в текущем элементе массива. В многомерном случае, если рассматриваемая координата не последняя, следует вместо этого узнать значение, рекурсивно перейдя к следующей координате, и вернуть его. | ||
+ | |||
+ | Еще один момент, в которых отличается реализация {{---}} передаваемые в функцию параметры. В многомерном случае кроме всего прочего следует также передать рассматриваемое <tex>p-i+1</tex>-мерное дерево (или картеж из чисел, указывающих на соответствующие элементы массива), а также область, которую следует рассматривать (или <tex>p-i+1</tex> пар чисел, обозначающих отрезки на соответствующих координатных осях). Все остальные детали реализации остаются такими же как и в одномерном дерево отрезков. | ||
+ | |||
+ | Псевдокод: | ||
+ | |||
+ | operationCalc(area[], x1, x2, ..., xP, leftBorder, rightBorder, needLeft, needRight, vertex) | ||
+ | if needLeft > needRight | ||
+ | return 0 // нейтральный элемент по операции <tex>\times</tex> | ||
+ | if leftBorder == needLeft && rightBorder == needRight | ||
+ | if последняя координата | ||
+ | return t[x1][x2]...[xP][vertex] | ||
+ | else | ||
+ | return operationCalc(area[], x1, x2, ..., xP, vertex, 0, m - 1, area[P + 2].left, area[P + 2].right, 0) | ||
+ | med = (leftBorder + rightBorder) / 2 | ||
+ | return operationCalc(area[], x1, x2, ..., xP, leftBorder, med, needLeft, min(needRight, med), vertex * 2 + 1) <tex>\times</tex> | ||
+ | operationCalc(area[], x1, x2, ..., xP, med + 1, rightBorder, max(needLeft, med + 1), needRight, vertex * 2 + 2) | ||
==Обновление== | ==Обновление== | ||
Строка 56: | Строка 73: | ||
'''if''' leftBorder != rightBorder | '''if''' leftBorder != rightBorder | ||
update(newElem, x1, x2, ..., xP, vertex, x1Left, x1Rigth, x2Left, x2Right, ..., leftBorder, rightBorder, 0, m - 1, 0) | update(newElem, x1, x2, ..., xP, vertex, x1Left, x1Rigth, x2Left, x2Right, ..., leftBorder, rightBorder, 0, m - 1, 0) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Источники== | ==Источники== |
Версия 20:09, 2 июня 2012
Дерево отрезков естественным образом обобщается на двумерный и вообще говоря многомерный случай. Такая структура данных может вычислять значение некоторой ассоциативной функции на гиперпрямоугольнике. Например, она позволяет решать следующую задачу. Дан -мерный массив, где индекс каждого измерения массива может принимать значения от 1 до . Необходимо уметь изменять значение элемента массива, а также находить сумму на -мерной области. Каждую из этих операций многомерное дерево отрезков выполняет за .
Принцип работы
-мерное дерево отрезков — обычное дерево отрезков, элементами которого являются деревья отрезков размерности на 1 меньше. Основная идея заключается в рекурсивном переходе к деревьям меньшей размерности. Рассмотрим работу этого принципа на следующем примере. Пусть задано -мерное пространство с координатными осями . Необходимо найти значение некоторой ассоциативной функции на гиперпрямоугольнике.
Функция, вычисляющая ответ, должна работать следующим образом. На вход она принимает
-мерное дерево отрезков, которое соответствует рассматриваемой области (где — количество координатных осей, которые не были рассмотрены), а также -мерную область, для которой следует вычислить функцию. Вначале она находит -мерные деревья отрезков, которые соответствуют отрезку по координате, и рекурсивно запускается от них (если текущее дерево одномерное, то функция просто возвращает ответ из соответствующего листа). После этого считает итоговый результат, используя полученные после рекурсивных вызовов значения.Для того, чтобы определить, от каких именно деревьев отрезков следует запускаться рекурсивно, действовать необходимо так же, как и в одномерном случае. Т. е. если текущий отрезок не пересекается с необходимым, то возвращаем нейтральный элемент, если он полностью лежит в необходимом отрезке, то рекурсивно переходим к следующей координате, иначе разобьем текущий отрезок пополам, и рассмотри отдельно каждую из частей.
На рисунке справа показан пример обработки очередной координаты (поиск соответствующих отрезку элементов — деревьев на 1 меньшей мерности).
Таким образом, алгоритм совершит
вхождений в рекурсию, каждая итерация которой работает за и получим необходимую асимптотику.Хранение
Пусть необходимо хранить дерево отрезков для
-мерной области, размеры которой . Удобнее всего это делать с помощью -мерного массива. Однако его размеры по каждой координате, так же как и в одномерном случае, должны превышать размеры соответствующего отрезка в 4 раза. Т. е. потребуется массив размером . Так двумерное дерево отрезков удобно хранить в виде массива, размером . Каждая строчка такого массива соответствует некоторому отрезку по первой координате. Сама же строчка является деревом отрезков по второй координате.На рисунке справа показан пример дерева отрезков для суммы на массиве 4 на 4, заполненного числами от 1 от 16. Например, в элементе
хранится сумма элементов, соответствующих отрезку по первой координате и по второй в исходном массиве. А в ячейке хранится сумма всех элементов.Интересно, что если построить дерево вначале по второй координате, а потом по первой, то получившийся массив будет таким же. Т. е. данный двумерный массив можно рассматривать как массив деревьев отрезков, где каждое дерево соответствует некоторому отрезку по второй координате, а в нем хранятся суммы по первой.
Заметим, что в общем случае для хранения
-мерного дерева отрезков требуется памяти, где — общее количество элементов.Построение
Запрос
Рассмотрим отличия реализации многомерного и одномерного случаев. На самом деле, отличаются реализации только в двух местах. Во-первых, если рассматриваемый отрезок совпадает с необходимым, то в одномерном случае функция просто возвращает число, которое находится в текущем элементе массива. В многомерном случае, если рассматриваемая координата не последняя, следует вместо этого узнать значение, рекурсивно перейдя к следующей координате, и вернуть его.
Еще один момент, в которых отличается реализация — передаваемые в функцию параметры. В многомерном случае кроме всего прочего следует также передать рассматриваемое
-мерное дерево (или картеж из чисел, указывающих на соответствующие элементы массива), а также область, которую следует рассматривать (или пар чисел, обозначающих отрезки на соответствующих координатных осях). Все остальные детали реализации остаются такими же как и в одномерном дерево отрезков.Псевдокод:
operationCalc(area[], x1, x2, ..., xP, leftBorder, rightBorder, needLeft, needRight, vertex) if needLeft > needRight return 0 // нейтральный элемент по операцииif leftBorder == needLeft && rightBorder == needRight if последняя координата return t[x1][x2]...[xP][vertex] else return operationCalc(area[], x1, x2, ..., xP, vertex, 0, m - 1, area[P + 2].left, area[P + 2].right, 0) med = (leftBorder + rightBorder) / 2 return operationCalc(area[], x1, x2, ..., xP, leftBorder, med, needLeft, min(needRight, med), vertex * 2 + 1) operationCalc(area[], x1, x2, ..., xP, med + 1, rightBorder, max(needLeft, med + 1), needRight, vertex * 2 + 2)
Обновление
Как и в одномерном случае, обновить в массиве необходимо не один элемент, а все, которые отвечают за области, в которых он присутствует. Таким образом, при обработке отрезка по некоторой координате (если она не последняя) следует выполнить следующие действия:
- Если рассматриваемый отрезок содержит больше одного элемента, разобьем его на две части и рекурсивно перейдем в ту, где находится необходимый элемент
- Перейдем к следующей координате
Заметим, что "переходов к следующей координаты" при рассмотрении некоторой координатной оси будет совершено
, а итоговая сложность составит .Отдельно следует рассмотреть, что происходит, когда текущее дерево является одномерным (мы рассмотрели все координаты, кроме текущей):
- Если рассматриваемый отрезок содержит больше одного элемента, разобьем его на две части и рекурсивно перейдем в ту, где находится необходимый элемент
- Найдем первую координату, в которой рассматривается больше одного элемента. Обновим значение элемента массива с помощью уже вычисленных значений для разбитого надвое отрезка по этой координате.
- Если мы рассматриваем область, состоящую из одного элемента, обновим значение массива.
Псевдокод:
update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, leftBorder, rightBorder, vertex)
if leftBorder != rightBorder
med = (leftBorder + rightBorder) / 2
if med >= newElem.x(P+1)
update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, leftBorder, med, vertex * 2 + 1)
else
update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, med + 1, vertex * 2 + 2)
if последняя координата
for I = 1..n
if xILeft != xIRigth
t[x1][x2]...[xP][vertex] = t[x1][x2]...[xI * 2 + 1]...[vertex]
t[x1][x2]...[xI * 2 + 2]...[vertex]
return
t[x1][x2]...[xP][vertex] = newElem.value
else
if leftBorder != rightBorder
update(newElem, x1, x2, ..., xP, vertex, x1Left, x1Rigth, x2Left, x2Right, ..., leftBorder, rightBorder, 0, m - 1, 0)