Теорема Сэвича. Совпадение классов NPS и PS — различия между версиями
Leugenea (обсуждение | вклад) м (→Теорема Сэвича) |
Leugenea (обсуждение | вклад) м (→Определение) |
||
Строка 4: | Строка 4: | ||
{{Определение | {{Определение | ||
|definition=<tex>\mathrm{PS}</tex> <tex>\mathrm{(PSPACE)}</tex> {{---}} класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера. <br> | |definition=<tex>\mathrm{PS}</tex> <tex>\mathrm{(PSPACE)}</tex> {{---}} класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера. <br> | ||
− | <tex>\mathrm{PS}=\bigcup\limits_{p(n) \in | + | <tex>\mathrm{PS}=\bigcup\limits_{p(n) \in poly} \mathrm{DSPACE}(p(n))</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition=<tex>\mathrm{NPS}</tex> <tex>\mathrm{(NPSPACE)}</tex> {{---}} класс языков, разрешимых на недетерминированной машине Тьюринга с использованием памяти полиномиального размера. <br> | |definition=<tex>\mathrm{NPS}</tex> <tex>\mathrm{(NPSPACE)}</tex> {{---}} класс языков, разрешимых на недетерминированной машине Тьюринга с использованием памяти полиномиального размера. <br> | ||
− | <tex>\mathrm{NPS}=\bigcup\limits_{p(n) \in | + | <tex>\mathrm{NPS}=\bigcup\limits_{p(n) \in poly} \mathrm{NSPACE}(p(n))</tex>. |
}} | }} | ||
Версия 12:41, 3 июня 2012
Содержание
Класс PS
Определение
Определение: |
. | — класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера.
Определение: |
. | — класс языков, разрешимых на недетерминированной машине Тьюринга с использованием памяти полиномиального размера.
Связь класса PS с другими классами теории сложности
Теорема: |
. |
Доказательство: |
Рассмотрим любой язык | из . Так как , то существует машина Тьюринга , распознающая за полиномиальное время. Это значит, что не сможет использовать более, чем полиномиальное количество памяти, следовательно .
Теорема: |
. |
Доказательство: |
Рассмотрим любой язык | из . Так как , то существует программа-верификатор , что для каждого слова из (и только для них) существует такой сертификат полиномиальной длины, что допускает слово и сертификат. Тогда, чтобы проверить принадлежность слова языку, мы можем перебрать все сертификаты полиномиальной длины. Для этого необходим полиномиальный размер памяти. Из этого следует, что .
Теорема Сэвича
Теорема: |
Для любой справедливо: . То есть, если недетерминированная машина Тьюринга может решить проблему, используя памяти, то существует детерминированная машина Тьюринга, которая решает эту же проблему, используя не больше, чем памяти. |
Доказательство: |
Рассмотрим машину Тьюринга с входной и рабочей лентой. Ее конфигурацию можно закодировать так: закодировать позицию и содержание рабочей ленты (займет памяти), позицию входной ленты (займет памяти). Так как , то размер конфигурации составит .Пусть Reach(I, J, k): if (k = 0) return (IJ) or (I = J) // запись (I J) означает возможность перехода МТ из конфигурации I в конфигурацию J за один шаг else for (Y) // перебор промежуточных конфигураций if Reach(I, Y, k-1) and Reach(Y, J, k-1) return true return false Эта функция имеет глубину рекурсии , на каждом уровне рекурсии использует памяти для хранения текущих конфигураций.Рассмотрим машину Тьюринга , распознающую язык . Эта машина может иметь конфигураций. Объясняется это следующим образом. Пусть имеет состояний и символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте . Головка на входной ленте может быть в одной из позиций и в одной из на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает .Рассмотрим функцию, которая по заданному слову проверяет его принадлежность к языку : Check(x, L):
for (T) // перебор конфигураций, которые содержат допускающие состояния
if Reach(S, T,
)
return true
return false
Если слово принадлежит языку, то оно будет допущено, так как будут рассмотрены все возможные пути допуска. Это обеспечивается указанной нам глубиной рекурсии для функции В итоге функция . И если слово не допускается за шагов (количество всех возможных конфигураций), то оно уже гарантированно не может быть допущено. имеет глубину рекурсии , на каждом уровне рекурсии используется памяти. Тогда всего эта функция использует памяти. |
Следствие
Вывод
.
Известно, что
. Так что хотя бы одно из рассмотренных включений — строгое, но неизвестно, какое. Принято считать, что все приведенные выше включения — строгие.
Источники
- Michael Sipser. Introduction to the theory of computation.