Теорема Лаутемана — различия между версиями
| Строка 3: | Строка 3: | ||
| proof =  | | proof =  | ||
Рассмотрим <tex>L \in \mathrm{BPP}</tex>. Существует такая программа <tex>p</tex>, что <tex>P(p(x) = [x \in L]) \geqslant \frac{2}{3}</tex>. Покажем, что <tex>\overline{L} \in \mathrm{BPP}</tex>. Для этого рассмотрим следующую программу:  | Рассмотрим <tex>L \in \mathrm{BPP}</tex>. Существует такая программа <tex>p</tex>, что <tex>P(p(x) = [x \in L]) \geqslant \frac{2}{3}</tex>. Покажем, что <tex>\overline{L} \in \mathrm{BPP}</tex>. Для этого рассмотрим следующую программу:  | ||
| − |   <tex>p'(x)  | + |   <tex>p'(x):</tex>  | 
      <tex>return (1 - p(x));</tex>  |       <tex>return (1 - p(x));</tex>  | ||
| − | |||
<tex>P(p'(x) = [x \in \overline{L}]) = P(p(x) = [x \in L]) \geqslant \frac{2}{3}</tex>. Таким образом <tex>\overline{L} \in \mathrm{BPP}</tex>.  | <tex>P(p'(x) = [x \in \overline{L}]) = P(p(x) = [x \in L]) \geqslant \frac{2}{3}</tex>. Таким образом <tex>\overline{L} \in \mathrm{BPP}</tex>.  | ||
#<tex>L \in \mathrm{BPP} \Rightarrow \overline{L} \in \mathrm{BPP} \Rightarrow L = \overline{\overline{L}} \in \mathrm{coBPP}</tex>. Получаем <tex>\mathrm{BPP} \subset \mathrm{coBPP}</tex>.  | #<tex>L \in \mathrm{BPP} \Rightarrow \overline{L} \in \mathrm{BPP} \Rightarrow L = \overline{\overline{L}} \in \mathrm{coBPP}</tex>. Получаем <tex>\mathrm{BPP} \subset \mathrm{coBPP}</tex>.  | ||
Версия 02:28, 4 июня 2012
| Лемма: | 
| Доказательство: | 
| 
 Рассмотрим . Существует такая программа , что . Покажем, что . Для этого рассмотрим следующую программу: . Таким образом . 
  | 
Теорема
| Теорема (Лаутеман): | 
| Доказательство: | 
| 
 Из того, что класс замкнут относительно дополнения и , следует, что достаточно доказать включение . можно определить как множество таких языков , что тогда и только тогда, когда существует «много» таких вероятностных лент , что . — множество таких языков , что тогда и только тогда, когда существует такой , что для любого . Таким образом, необходимо уметь записывать «существует много» с помощью кванторов . Рассмотрим язык для некоторого . Определим операцию над словами из этого языка как побитовое исключающее или. Назовем , содержащееся в , -большим, если существует такой набор , что . Иначе будем называть — -маленьким. Если , то является -маленьким. Найдем достаточное условие, при котором является -большим. Воспользуемся утверждением, что если вероятность , то существует из . Для этого выберем случайно набор . . Если , то существует такой набор , что , то есть — -большое. Рассмотрим язык . Из того, что , следует, что существует такая вероятностная машина Тьюринга , что , где некоторый полином, который будет определен позднее. Пусть использует бит случайной ленты. Зафиксируем . Возьмем . Рассмотрим множество , являющееся событием в вероятностном пространстве , где . Подберем теперь и так, чтобы — -большое. Если , то . Значит . Чтобы в этом случае было бы -большим потребуем . Если , то . Чтобы в этом случае было бы -маленьким потребуем . Выберем так, чтобы и . Получаем , то есть — -большое. Таким образом, : , . Получаем , и . |