Теоремы о временной и ёмкостной иерархиях — различия между версиями
DrozdovVA (обсуждение | вклад) |
DrozdovVA (обсуждение | вклад) |
||
| Строка 32: | Строка 32: | ||
|statement=Пусть даны две функции <tex>f</tex> и <tex>g</tex> такие, <span title="Здесь Sim(n) — время симуляции n шагов одной машины Тьюринга на другой машине" style="border-bottom: 1px dotted; cursor: help;">что</span> <tex>\lim \limits_{n\rightarrow\infty} \frac{Sim(f(n))}{g(n)}=0</tex>, тогда <tex>DTIME(f(n)) \neq DTIME(g(n))</tex>. | |statement=Пусть даны две функции <tex>f</tex> и <tex>g</tex> такие, <span title="Здесь Sim(n) — время симуляции n шагов одной машины Тьюринга на другой машине" style="border-bottom: 1px dotted; cursor: help;">что</span> <tex>\lim \limits_{n\rightarrow\infty} \frac{Sim(f(n))}{g(n)}=0</tex>, тогда <tex>DTIME(f(n)) \neq DTIME(g(n))</tex>. | ||
|proof=Доказательство аналогично доказательству [[Теоремы о временной и емкостной иерархиях#space|теоремы о емкостной иерархии]]. При этом в отличии от памяти, время работы машины Тьюринга меньше, чем время ее симуляции на другой машине, из-за чего на соотношение <tex>f</tex> и <tex>g</tex> поставлено более сильное условие. | |proof=Доказательство аналогично доказательству [[Теоремы о временной и емкостной иерархиях#space|теоремы о емкостной иерархии]]. При этом в отличии от памяти, время работы машины Тьюринга меньше, чем время ее симуляции на другой машине, из-за чего на соотношение <tex>f</tex> и <tex>g</tex> поставлено более сильное условие. | ||
| − | Положим <tex>h(n)=Sim^{-1}( | + | Положим <tex>h(n)=Sim^{-1}(g(n))</tex>, где <tex>Sim^{-1}</tex> — обратная к времени симуляции функция, <tex>L=\{x\bigm|x(x)\Bigr|_{T\leq h(|x|)}\neq 1\}</tex>. Тогда: |
| − | + | * <tex>L \in DTIME(g(n))</tex>, поскольку <tex>Sim(h(n))=g(n)</tex>, то есть запуск с ограничением <tex>T \leq h(|x|)</tex> осуществляется за <tex>O(g(n))</tex> времени; | |
| − | * <tex>L \notin DTIME(f(n))</tex> (доказывается аналогично соответствующему пункту предыдущей теоремы). | + | * <tex>L \notin DTIME(f(n))</tex> (доказывается аналогично соответствующему пункту предыдущей теоремы с учетом соотношения <tex>f(n)=o(h(n))</tex>). |
}} | }} | ||
Версия 00:30, 5 июня 2012
| Теорема (о емкостной иерархии): |
Пусть даны две функции и такие, что , тогда . |
| Доказательство: |
|
Для доказательства воспользуемся диагональным методом.
[1]
|
| Теорема (о временной иерархии): |
Пусть даны две функции и такие, что , тогда . |
| Доказательство: |
|
Доказательство аналогично доказательству теоремы о емкостной иерархии. При этом в отличии от памяти, время работы машины Тьюринга меньше, чем время ее симуляции на другой машине, из-за чего на соотношение и поставлено более сильное условие. Положим , где — обратная к времени симуляции функция, . Тогда:
|
Примечания
- ↑ Суть данного метода для набора множеств заключается в построении нового множества по принципу: . В этом случае для любого . Аналогичный прием можно применять для набора функций путем построения новой функции . Элементы иногда называют диагональными, поскольку находятся на диагонали таблицы «функция — аргумент».
- ↑ Вообще говоря, для корректного запуска с лимитом по памяти на функцию дополнительно накладывается условие конструируемости по памяти, то есть возможность вычислить значение функции по , используя не более памяти, однако часто это условие опускается.