Изменения

Перейти к: навигация, поиск
м
Нет описания правки
У нас есть массив, который состоит из двух отсортированных частей:
[[Файл:Merge_O(1)_1.png|left|525px]]   
Разобьем наш массив на <tex>cnt</tex> подряд идущих блоков длиной <tex>len = \lfloor \sqrt{n} \rfloor </tex>. Остаток трогать не будем.
[[Файл:Merge_O(1)_2.png|left|525px]]   
Найдем блок, содержащий конец первой отсортированной части. Поменяем его с последним блоком. В дальнейшем будем использовать его как буфер обмена.
[[Файл:Merge_O(1)_3.png|left|525px]]          
Отсортируем блоки по возрастанию по первому элементу (если первые элементы равны, тогда по последнему). Для этого подойдет любая квадратичная или более быстрая сортировка, которая требует <tex> O (1) </tex> дополнительной памяти. Здесь нам выгодно использовать алгоритм, линейный по числу обменов, т.е. подходит [[Сортировка выбором|сортировка выбором]]. Следует заметить, что, после сортировки этих блоков, элементы, которые стоят левее заданного и больше его, находились в противоположной части отсортированного массива, также они находятся в пределах одной группы, поэтому количество инверсий для каждого элемента не больше <tex>\sqrt{n}</tex>.
Так как блоков <tex> \sqrt{n} </tex>, то количество операций на этом шаге <tex> O(n) </tex>.
[[Файл:Merge_O(1)_4.png|left|525px]]         
Пользуясь буфером обмена, последовательно сольем пары соседних блоков (процесс слияния блоков описан ниже) <tex>([0, ~ len - 1]</tex> и <tex>[len, ~ 2 ~ len - 1],</tex> потом <tex>[len, ~ 2 ~ len - 1]</tex> и <tex>[2 ~ len, ~ 3 ~ len - 1],</tex> и т.д.<tex>)</tex>. Так как после предыдущего шага количество инверсий для каждого элемента не больше <tex>\sqrt{n}</tex>, то ему надо сдвинуться влево не больше, чем на <tex>\sqrt{n}</tex> элементов, поэтому в результате мы получим, что первые <tex>len \cdot (cnt - 1)</tex> элементов исходного массива отсортированы.
Количество блоков <tex> \sqrt{n} </tex> и каждое слияние работает за <tex> О O(\sqrt{n}) </tex> , поэтому количество операций на этом шаге <tex> O(n) </tex>.
[[Файл:Merge_O(1)_5.png|left|525px]]   
<tex>S</tex> {{---}} размер остатка вместе с буфером. Используя квадратичную или более быструю сортировку, которая требует <tex> O(1) </tex> дополнительной памяти, отсортируем подмассив длиной <tex> 2S </tex>, который находится в конце.
Так как <tex>S < 2 \sqrt{n}</tex>, то сортировка пройдет за <tex>O(n)</tex>.
[[Файл:Merge_O(1)_6.png|left|525px]]       
Теперь на последних <tex> S </tex> местах будут находиться <tex> S </tex> максимальных элементов. Оставшаяся часть представляет собой массив, содержащий две отсортированные части, причем размер второй равен <tex> S </tex>. По аналогии с тем что делали раньше, только в обратную сторону, отсортируем оставшуюся часть, разделив ее на блоки длиной <tex>S</tex>, используя последние <tex>S</tex> как буфер обмена. Не забудем после отсортировать буфер обмена.
[[Файл:Merge_O(1)_7.png|left|525px]]          
В результате мы получили отсортированный исходный массив.
Попытаемся слить первый и второй блок. Поменяем местами первый блок с буфером обмена. И, как в обычном слиянии, пользуясь двумя указателями, сливаем второй блок и только что измененный буфер. Результат начинаем записывать с начала первого блока. Чтобы не потерять данные, вместо записи используем обмен элементов. Так как блоки имеют одинаковую длину и между указателем на второй блок и указателем на запись расстояние равно длине блока, то слияние произойдет корректно.
[[Файл:Merge_O(1)_buffer.png|left|355px]]                           
== Ссылки и литература ==
338
правок

Навигация