Сведение задачи LCA к задаче RMQ — различия между версиями
(→Запрос: family mixup) |
(→Доказательство корректности алгоритма: changes of contradiction condition) |
||
Строка 25: | Строка 25: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Наименьшему общему предку вершин <tex>u, v</tex> соответствует минимальная глубина на отрезке <tex> | + | Наименьшему общему предку вершин <tex>u, v</tex> соответствует минимальная глубина на отрезке <tex>d[I[u], I[v]]</tex>. |
|proof= | |proof= | ||
− | Рассмотрим два узла <tex>u, v</tex> корневого дерева <tex>T</tex>. Рассмотрим отрезок <tex> | + | Рассмотрим два узла <tex>u, v</tex> корневого дерева <tex>T</tex>. Рассмотрим отрезок <tex>d[I[u]..I[v]]</tex>. Поскольку этот отрезок {{---}} путь из <tex>u</tex> в <tex>v</tex>, он проходит через их наименьшего общего предка <tex>w</tex> (в дереве есть только один простой путь между вершинами), а следовательно минимум на отрезке никак не больше глубины <tex>w</tex>. Заметим, что в момент добавления <tex>I[u]</tex> обход посещал поддерево с корнем <tex>w</tex>. В момент добавления <tex>I[v]</tex> мы все еще в поддереве с корнем <tex>w</tex>. Значит, и на отрезке между <tex>I[u]</tex> и <tex>I[v]</tex> мы находились внутри поддерева с корнем <tex>w</tex>. Отсюда сделаем заключение, что на рассматриваемом отрезке не посещалась вершина, отличная от <tex>w</tex>, с глубиной меньшей либо равной глубины <tex>w</tex>, т. к. подобной вершины нет в поддереве с корнем <tex>w</tex>. |
− | }} | + | }}. |
== Пример == | == Пример == |
Версия 11:01, 13 июня 2012
Содержание
Постановка задачи LCA
Определение: |
Наименьшим общим предком (least common ancestor) двух узлов | и в корневом дереве называется узел , который среди всех узлов, являющихся предками как узла , так и , имеет наибольшую глубину.
Пусть дано корневое дерево
. На вход подаются запросы вида , для каждого запроса требуется найти их наименьшего общего предка.Алгоритм
Препроцессинг
Для каждой вершины
определим глубину вершину с помощью следующей рекурсивной формулы:Ясно, что глубина вершины элементарным образом поддерживается во время обхода в глубину.
Запустим обход в глубину из корня, который будет вычислять значения следующих величин:
- Cписок глубин посещенных вершин . Глубина текущей вершины добавляется в конец списка при входе в данную вершину, а также после каждого возвращения из её сына.
- Список посещений узлов , строящийся аналогично предыдущему, только добавляется не глубина а сама вершина.
- Значение функции , возвращающей любой индекс в списке глубин , по которому была записана глубина вершины (например при входе в вершину).
Запрос
Будем считать, что
возвращает индекс минимального элемента в на отрезке . Тогда ответом на запрос будет .Доказательство корректности алгоритма
Теорема: |
Наименьшему общему предку вершин соответствует минимальная глубина на отрезке . |
Доказательство: |
Рассмотрим два узла | корневого дерева . Рассмотрим отрезок . Поскольку этот отрезок — путь из в , он проходит через их наименьшего общего предка (в дереве есть только один простой путь между вершинами), а следовательно минимум на отрезке никак не больше глубины . Заметим, что в момент добавления обход посещал поддерево с корнем . В момент добавления мы все еще в поддереве с корнем . Значит, и на отрезке между и мы находились внутри поддерева с корнем . Отсюда сделаем заключение, что на рассматриваемом отрезке не посещалась вершина, отличная от , с глубиной меньшей либо равной глубины , т. к. подобной вершины нет в поддереве с корнем .
Пример
Рассмотрим дерево на рисунке 1. Найдем наименьшего общего предка вершин, помеченных красным цветом. Список глубин, получающийся в результате обхода в глубину -
Глубина наименьшего общего предка красных вершин равна минимуму на отрезкеСложность
Для нахождения минимального элемента на отрезке можно использовать дерево отрезков. Длина массива глубин будет равна , т. е. дерево отрезков можно построить за Таким образом, препроцессинг работает за Время выполнения запроса равно времени запроса минимального элемента на отрезке в дереве отрезков, т. е.
См.также
- Метод двоичного подъема
- Решение RMQ с помощью разреженной таблицы
- Алгоритм Фарака-Колтона и Бендера
- Сведение задачи RMQ к задаче LCA