Лемма Бернсайда, задача о числе ожерелий — различия между версиями
Строка 20: | Строка 20: | ||
= \frac { \sum_{ x \in X } |St(x)| } { |G| } = \sum_{ x \in X } \frac {1} { |Orb(x)| } </tex> <br> | = \frac { \sum_{ x \in X } |St(x)| } { |G| } = \sum_{ x \in X } \frac {1} { |Orb(x)| } </tex> <br> | ||
Последнее преобразование выполнено на основании утверждения 1. | Последнее преобразование выполнено на основании утверждения 1. | ||
+ | |||
+ | === Задача о числе ожерелий === | ||
+ | Пусть есть <tex>n</tex> бусинок <tex>m</tex> разных сортов, <tex>n_i</tex> назовем количество бусинок <tex>i</tex>ого цвета<tex>(i \in [1;m])</tex>. Найти число ожерелий которые можно составить из этих бусинок. Ожерелья полученные поворотом друг из друга поворотом или отражением считаются одним ожерельем. | ||
+ | |||
+ | '''решение:''' | ||
[[Категория:Теория групп]] | [[Категория:Теория групп]] |
Версия 15:11, 4 июля 2010
Эта статья требует доработки!
- Надо решить задачу о числе ожерелий!
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Лемма (Бернсайда): |
Число орбит |
Утверждение (1): |
Преобразуем выражение для числа орбит, полученное из леммы Бернсайда.
Последнее преобразование выполнено на основании утверждения 1.
Задача о числе ожерелий
Пусть есть
бусинок разных сортов, назовем количество бусинок ого цвета . Найти число ожерелий которые можно составить из этих бусинок. Ожерелья полученные поворотом друг из друга поворотом или отражением считаются одним ожерельем.решение: