Пересечение окружностей — различия между версиями
Proshev (обсуждение | вклад) |
|||
Строка 59: | Строка 59: | ||
<tex>>(2\bar{a}^2|\bar{b}|(x_c-r_c-x_0)-|\bar{b}|(r_0^2-r_1^2+\bar{a}^2)(x_1-x_0))^2</tex><br> | <tex>>(2\bar{a}^2|\bar{b}|(x_c-r_c-x_0)-|\bar{b}|(r_0^2-r_1^2+\bar{a}^2)(x_1-x_0))^2</tex><br> | ||
К сожалению, дальше упрощать ничего не получается :( Уже из этого выражения можно посчитать погрешность, так влоооом :( | К сожалению, дальше упрощать ничего не получается :( Уже из этого выражения можно посчитать погрешность, так влоооом :( | ||
+ | |||
+ | [[Категория: Вычислительная геометрия]] |
Версия 15:03, 16 июня 2012
Заданы две окружности разного радиуса точками центров , и радиусами и соответственно.
Будем вычислять координаты искомых точек пересечения окружностей в новой системе координат, связанной с векторами
Заметим, что в уравнении третье слагаемое в правой части равно , т.к. векторы и перпендикулярны.
Мы, например, будем рассматривать точку с положительным знаком .
Радиус-вектор такой точки будет равен . Его координата равна . , .
Допустим есть точка с координатой равной (точка вхождения некой окружности). Нам надо научиться сравнивать их для добавления в строку состояний.
К сожалению, дальше упрощать ничего не получается :( Уже из этого выражения можно посчитать погрешность, так влоооом :(