Уравнение Пелля — различия между версиями
Строка 39: | Строка 39: | ||
Поскольку <tex>a_1a_2-db_1b_2\equiv a_1^2-b_1^2d\equiv c\equiv 0(mod~|c|)</tex> и <tex>a_1b_2-a_2b_1\equiv a_1b_1-a_1b_1 \equiv 0(mod~|c|)</tex>, то числа <tex> x = \frac{a_1a_2-b_1b_2d}{c}</tex> и <tex>y = \frac{a_1b_2-a_2b_1}{c}</tex> целые. <tex>x^2-dy^2=(x-y\sqrt{d})(x+y\sqrt{d}) = \frac{a_2-b_2\sqrt{d}}{a_1-b_1\sqrt{d}}\frac{a_2+b_2\sqrt{d}}{a_1+b_1\sqrt{d}} = \frac{a_2^2-db_2^2}{a_1^2-db_1^2}=\frac{c}{c}=1</tex>. Поэтому <tex>(x, y) </tex> - искомое нетривиальное решение уравнения Пелля. | Поскольку <tex>a_1a_2-db_1b_2\equiv a_1^2-b_1^2d\equiv c\equiv 0(mod~|c|)</tex> и <tex>a_1b_2-a_2b_1\equiv a_1b_1-a_1b_1 \equiv 0(mod~|c|)</tex>, то числа <tex> x = \frac{a_1a_2-b_1b_2d}{c}</tex> и <tex>y = \frac{a_1b_2-a_2b_1}{c}</tex> целые. <tex>x^2-dy^2=(x-y\sqrt{d})(x+y\sqrt{d}) = \frac{a_2-b_2\sqrt{d}}{a_1-b_1\sqrt{d}}\frac{a_2+b_2\sqrt{d}}{a_1+b_1\sqrt{d}} = \frac{a_2^2-db_2^2}{a_1^2-db_1^2}=\frac{c}{c}=1</tex>. Поэтому <tex>(x, y) </tex> - искомое нетривиальное решение уравнения Пелля. | ||
+ | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |statement= | ||
+ | Уравнение Пелля имеет нетривиальное решение. Доказательство через цепные дроби. | ||
+ | |proof= | ||
+ | Разложим <tex>\sqrt{d}</tex> в цепную дробь. <tex> \sqrt{d}=a_0+\frac{1}{a_1+\cdots+\frac{1}{a_0+\sqrt{d}}}</tex>. Значит <tex>\sqrt{d}=\frac{P_{n-1}(a_0+\sqrt{d})+P_{n-2}}{Q_{n-1}(a_0+\sqrt{d})+Q_{n-2}}</tex>, отсюда <tex>P_{n-1}a_0+P_{n-1}\sqrt{d}+P_{n-2}=Q_{n-1}d+(Q_{n-1}a_0+Q_{n-2})\sqrt{d}</tex>. Отсюда получаем систему | ||
+ | <tex>\begin{cases} | ||
+ | P_{n-2}=Q_{n-1}d-P_{n-1}a_0 \\ | ||
+ | Q_{n-2}=P_{n-1}-Q_{n-1}a_0 \\ | ||
+ | \end{cases}</tex> | ||
+ | |||
+ | Умножаем первое на <tex>Q_{n-1}</tex> и вычитаем второе, умноженное на <tex>P_{n-1}</tex>. Получаем <tex>(-1)^{n+1}=P_{n-2}Q_{n-1}-Q_{n-2}P_{n-1}=Q_{n-1}^2d-P_{n-1}Q_{n-1}a_0-P_{n-1}^2+Q_{n-1}P_{n-1}a_0=Q_{n-1}^2d-P_{n-1}^2</tex>. Если <tex>n</tex> нечётное, то мы нашли решение. Пусть <tex>n</tex> чётное. Тогда <tex>x^2-dy^2=-1\Rightarrow (x-\sqrt{d}y)(x+\sqrt{d}y)=-1</tex>. <tex>(x-\sqrt{d}y)^2=x^2+dy^2-2xy\sqrt{d}</tex> в тоже время <tex>(x-\sqrt{d})^2=\frac{1}{(x+\sqrt{d}y)^2}=\frac{1}{(x^2+dy^2)+2xy\sqrt{d}}</tex>. В итоге получаем <tex>1=(x^2+dy^2-2xy\sqrt{d})(x^2+dy^2+2xy\sqrt{d})=(x^2+dy^2)^2-(2xy)^2d</tex>. | ||
}} | }} | ||
[[Категория:Теория чисел]] | [[Категория:Теория чисел]] |
Версия 23:15, 6 июля 2010
Эта статья требует доработки!
- Надо написать доказательство существования решения уравнения Пелля с помощью цепных дробей. Это доказательство можно перенести в отдельную статью.
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Определение: |
Уравнение вида | , где не является квадратом, называется уравнением Пелля
У этого уравнения есть тривиальное решение .
Теорема: |
Любое решение уравнения Пелля — подходящая дробь для . |
Доказательство: |
Рассматриваем , остальные корни получатся из симметрии. Так как , то . . Следовательно . Разделим обе части на получим : . Значит по теореме о приближении является подходящей дробью для . |
Лемма: |
Для любого вещественного числа и натурального существует такое целое число и натуральное число , что и |
Доказательство: |
Рассмотрим числа 0 и 1, а также дробные части чисел Если . Если все расстояния между этими числами было больше , то приходим к противоречию. Значит какое-то из расстояний не превосходит . , где , то . Так что берём и . Два других случая очевидны. |
Теорема: |
Уравнение Пелля имеет нетривиальное решение. |
Доказательство: |
Положим . Для любого натурального в силу леммы существуют такие натуральные числа и , что и . Далее : . Поэтому принимает конечное число значений. Но принимает бесконечное число значений. Поэтому существует такое число , что для него есть бесконечно много пар , таких что .Рассмотрим остатки от деления на чисел . Количество остатков конечно, а пар бесконечно, поэтому существуют две различные пары такие, что и , .. Поскольку . и , то числа и целые. . Поэтому - искомое нетривиальное решение уравнения Пелля. |
Теорема: |
Уравнение Пелля имеет нетривиальное решение. Доказательство через цепные дроби. |
Доказательство: |
Разложим Умножаем первое на в цепную дробь. . Значит , отсюда . Отсюда получаем систему и вычитаем второе, умноженное на . Получаем . Если нечётное, то мы нашли решение. Пусть чётное. Тогда . в тоже время . В итоге получаем . |