Явление Гиббса — различия между версиями
Komarov (обсуждение | вклад) (Новая страница: «{{В разработке}}») |
Komarov (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
+ | |||
+ | {{Определение | ||
+ | |definition=''Явление Гиббса'' {{---}} некоторое особое поведение частичных сумм ряда Фурье в окрестности точки разрыва разлагаемой функции. | ||
+ | }} | ||
+ | |||
+ | С целью упрощения вычислений рассмотрим на примере функции, равной знаку числа <tex>f(x) = \operatorname{sign} x</tex>, <tex>2\pi</tex>-периодизованной. Эта функция удовлетворяет условию теоремы Дини в каждой точке <tex>\Rightarrow</tex> в каждой точке её можно разложить в ряд Фурье. <tex>f(x) </tex> {{---}} нечётная, значит, будет ряд только по синусам: | ||
+ | |||
+ | <tex>s_n(x) = \int\limits_Q f(t) D_n(t-x) dt = \int\limits_0^\pi + \int\limits_{-\pi}^0 = -\int\limits_{-\pi}^0 D_n(t-x)dt + \int\limits_0^\pi D_n(t-x)dt</tex> <tex>=\int\limits_0^\pi D_n(t-x) dt - \int\limits_0^\pi D_n(t+x)dt</tex> <tex>=\int\limits_{-x}^{\pi-x} D_n(t)dt - \int\limits_x^{\pi+x} D_n(t) dt</tex> <tex>= \int\limits_{-x}^x + \int\limits_x^{\pi-x} - \int\limits_x^{\pi+x}</tex> <tex>= \int\limits_{-x}^x - \left(\int\limits_x^{\pi+x} - \int\limits_x^{\pi-x}\right)</tex> <tex>=\int\limits_{-x}^x - \int\limits_{\pi-x}^{\pi+x}</tex> <tex>=\int\limits_{-x}^x (D_n(t) - D_n(\pi + t))dt</tex> | ||
+ | |||
+ | Итого: <tex>s_n(x) = \int\limits_{-x}^x (D_n(t) - D_n(\pi + t)) dt</tex> | ||
+ | |||
+ | <tex>D_n(t) - D_n(\pi + t) = \frac1\pi \frac{\sin [(n+1/2)t - (-1)^n t/2]}{\sin t}</tex> | ||
+ | |||
+ | <tex>b + \frac{-(-1)^n}2 = 2\left[\frac{n+1}2\right]</tex> | ||
+ | |||
+ | <tex>s_n(x) = \frac1\pi\int\limits_{-x}^x \frac{\sin 2\left[\frac{n+1}2\right]t}{\sin t} dt</tex> | ||
+ | |||
+ | Продифференцируем по <tex>x</tex>: | ||
+ | <tex>s'_n(x) = \frac2\pi \frac{\sin 2\left[\frac{n+1}2\right]x}{\sin x}</tex>, <tex>x \in \langle 0; \pi\rangle</tex> | ||
+ | |||
+ | <tex>s'_n(x_{mn}) = 0</tex>, <tex>x_{mn} = \frac\pi{m_n}</tex>, <tex>2\left[\frac{n+1}2\right] = m_n</tex> | ||
+ | |||
+ | Путём дифференциального исчисления проверяем, что <tex>m_n</tex> {{---}} точка максимума. | ||
+ | |||
+ | <tex>s_n(m_n) = \frac2\pi \int\limits_0^{x_{mn}} \frac{\sin m_nt}{\sin t} dt</tex> <tex>= \frac2\pi \int\limits_0^\pi \frac{\sin t}t \frac{t/m_n}{\sin t/m_n} dt</tex> | ||
+ | |||
+ | <tex>\frac{t}{\sin t}</tex> возрастает, значит, к этом интегралу применима теорема Лебега о предельном переходе под знаком интеграла: | ||
+ | |||
+ | <tex>s_n(m_n) > s_{n+1}(m_{n+1})</tex> | ||
+ | |||
+ | <tex>s_n(m_n) \to \frac2\pi\int\limits_0^\pi\frac{\sin t}t dt \approx 1,17\ldots</tex> | ||
+ | |||
+ | Смысл полученного в следуещем: функция пройдёт через точку максимума <tex>>1</tex> и резко пойдёт в ноль. Явление {{---}} явление Гиббса, он обнаружил физический эффект, связаный с математическим поведением этих сумм. |
Версия 04:41, 23 июня 2012
Эта статья находится в разработке!
Определение: |
Явление Гиббса — некоторое особое поведение частичных сумм ряда Фурье в окрестности точки разрыва разлагаемой функции. |
С целью упрощения вычислений рассмотрим на примере функции, равной знаку числа , -периодизованной. Эта функция удовлетворяет условию теоремы Дини в каждой точке в каждой точке её можно разложить в ряд Фурье. — нечётная, значит, будет ряд только по синусам:
Итого:
Продифференцируем по
: ,, ,
Путём дифференциального исчисления проверяем, что
— точка максимума.
возрастает, значит, к этом интегралу применима теорема Лебега о предельном переходе под знаком интеграла:
Смысл полученного в следуещем: функция пройдёт через точку максимума
и резко пойдёт в ноль. Явление — явление Гиббса, он обнаружил физический эффект, связаный с математическим поведением этих сумм.