Определение ряда Фурье — различия между версиями
м |
м |
||
Строка 71: | Строка 71: | ||
Колмогоров построил пример суммируемой <tex> 2\pi </tex>-периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье в индивидуальной точке. Это тем более важно, учитывая, что существуют непрерывные <tex> L_p </tex>-функции, ряды которых расходятся в бесконечном числе точек. | Колмогоров построил пример суммируемой <tex> 2\pi </tex>-периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье в индивидуальной точке. Это тем более важно, учитывая, что существуют непрерывные <tex> L_p </tex>-функции, ряды которых расходятся в бесконечном числе точек. | ||
− | + | Карлесон доказал, что для функций из <tex> L_2 </tex> (а такие функции автоматически <tex>\in L_1</tex>) ряд Фурье сходится почти всюду. | |
Если функция является <tex> 2T </tex>-периодической, то для нее соответствующей тригонометрической системой будет <tex> 1,\ \cos \frac{\pi}{T} x,\ldots \sin \frac{\pi}{T} x,\ \cos \frac{\pi}{T} nx,\ \sin \frac{\pi}{T} nx, \ldots (n = 1, 2 \ldots)</tex>. | Если функция является <tex> 2T </tex>-периодической, то для нее соответствующей тригонометрической системой будет <tex> 1,\ \cos \frac{\pi}{T} x,\ldots \sin \frac{\pi}{T} x,\ \cos \frac{\pi}{T} nx,\ \sin \frac{\pi}{T} nx, \ldots (n = 1, 2 \ldots)</tex>. |
Версия 11:40, 23 июня 2012
L_p
Определение: |
То есть, . | — совокупность -периодических функций, суммируемых с -й степенью на промежутке .
Определение: |
Систему функций | называют тригонометрической системой функций.
Каждая из этих функций ограниченная,
-периодическая, следовательно, все функции принадлежат .Заметим, что, из-за
-периодичности, .Утверждение: |
При :
, . |
Первые три равенства получаются двухкратным интегрированием по частям интеграла в левой части. Четвертое равенство очевидно, последние два получаются из предыдущих, так как | .
Определение: |
Тригонометрическим рядом называется ряд:
Если, начиная с какого-то места, . , то соответствующая сумма называется тригонометрическим полиномом. |
Замечание (предел в пространстве ): если , то
.
Теорема: |
Пусть тригонометрический ряд сходится в и имеет суммой функцию . Тогда для него выполняются формулы Эйлера-Фурье:
. |
Доказательство: |
Формула для очевидна.Пусть .По условию, . Зафиксируем некоторое натуральное :. Значит, .Если , то .Значит, Аналогично доказывается формула для . . |
Определение: |
Пусть функция | . Ряд Фурье — тригонометрический ряд, коэффициенты которого вычислены по формулам Эйлера-Фурье.
Колмогоров построил пример суммируемой -периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье в индивидуальной точке. Это тем более важно, учитывая, что существуют непрерывные -функции, ряды которых расходятся в бесконечном числе точек.
Карлесон доказал, что для функций из
(а такие функции автоматически ) ряд Фурье сходится почти всюду.Если функция является
-периодической, то для нее соответствующей тригонометрической системой будет .Пусть
определена и суммируема на . Тогда, продолжая ее периодически тем или иным способом на всю ось, мы будем получать разные ряды Фурье:- , на продолжаем как четную функцию. Тогда , ряд Фурье выглядит как .
- , на продолжаем как нечетную функцию. В этом случае , ряд Фурье имеет вид .
- , здесь присутствуют все члены ряда.
Итак, если
задана на , то на этом участке ее можно представлять различными рядами Фурье.