Интеграл Фейера — различия между версиями
м |
м |
||
Строка 12: | Строка 12: | ||
}} | }} | ||
− | Пользуясь определением, запишем <tex>\sigma_n(f,x)=\int\limits_{Q}f(x+t)\Phi_n(t)dt</tex>, что принято называть '''интегралом Фейера'''. Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по <tex>Q</tex> ядро Фейера: <tex>\int\limits_{Q}\Phi_n(t)dt=\frac{1}{n+1}\sum\limits_{k=0}^{n}\int\limits_{Q}D_k(t)dt = 1</tex>, то есть ядро Фейера нормированно <tex>1</tex>. Поступая аналогично ядру Дирихле, можно придти к выводу <tex>\sigma_n(f,x)-S = \int\limits_{Q}(f(x+t)-f(x-t)-2S)\Phi_n(t)dt</tex> {{---}} основная формула для исследования сумм Фейера в индивидуальной точке. Найдем замкнутое выражение для ядра Фейера. | + | Пользуясь определением, запишем <tex>\sigma_n(f,x)=\int\limits_{Q}f(x+t)\Phi_n(t)dt</tex>, что принято называть '''интегралом Фейера'''. Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по <tex>Q</tex> ядро Фейера: <tex>\int\limits_{Q}\Phi_n(t)dt=\frac{1}{n+1}\sum\limits_{k=0}^{n}\int\limits_{Q}D_k(t)dt = 1</tex>, то есть ядро Фейера нормированно <tex>1</tex>. Поступая аналогично ядру Дирихле, можно придти к выводу <tex>\sigma_n(f,x)-S = \int\limits_{Q}(f(x+t)-f(x-t)-2S)\Phi_n(t)dt</tex> {{---}} основная формула для исследования сходимости сумм Фейера в индивидуальной точке <tex>x</tex>. Найдем замкнутое выражение для ядра Фейера. |
{{Утверждение | {{Утверждение |
Версия 13:01, 23 июня 2012
Определение: |
Определим так называемые суммы Фейера, как среднее арифметическое сумм Фурье: | .
Подставим в эту формулу интеграл Дирихле:
Определение: |
Ядро Фейера - | .
Пользуясь определением, запишем , что принято называть интегралом Фейера. Так как ядро Дирихле четное, то по формуле, ядро Фейера тоже четное. Заинтегрируем по ядро Фейера: , то есть ядро Фейера нормированно . Поступая аналогично ядру Дирихле, можно придти к выводу — основная формула для исследования сходимости сумм Фейера в индивидуальной точке . Найдем замкнутое выражение для ядра Фейера.
Утверждение: |
|
Из этой формулы видно, что ядро Фейера всегда неотрицательно, в отличии от ядра Дирихле.
Определение: |
называется константой Лебега. |
Утверждение: |
при больших . |
Так как на выполняется двойное неравенство , то можно рассматривать .Разобьем интеграл на две части, :. Оценка сверху: .Оценка снизу: Отсюда получаем требуемое. . ( как интеграл Дирихле) |
Именно с этим фактом связана трудность исследования рядов Фурье в индивидуальной точке, в отличии от сумм Фейера, где ядро положительно и условия сходимости выписываются проще.
Поясним смысл сумм Фейера: в свое время, рассматривая числовые ряды, мы говорили, что свойства перманентности и эффективности. К примеру, если , то по методу средних арифметических. В точно таком же смысле, если взять ряд Фурье: (с.а.). В этом и состоит смысл введения сумм Фейера.
, где . Для расходящихся рядов можно применять обобщенные методы суммирования, главное, чтобы выполнялись