Представление групп — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(пример решения задачи)
м
Строка 5: Строка 5:
 
== Свободная группа ==
 
== Свободная группа ==
 
Рассмотрим конечный алфавит <tex> \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} </tex>. <br>
 
Рассмотрим конечный алфавит <tex> \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} </tex>. <br>
Рассмотрим множество строк над алфавитом <tex> \Sigma \cup \Sigma^{-1} ; \; S = S_1 S_2 \dots S_k , \; символ a \in \Sigma \cup \Sigma^{-1} </tex>. <br>
+
Рассмотрим множество строк над алфавитом <tex> \Sigma \cup \Sigma^{-1} ; \; S = s_1 s_2 \dots s_k , \; s_i \in \Sigma \cup \Sigma^{-1} </tex>. <br>
  
 
{{Определение
 
{{Определение
Строка 12: Строка 12:
 
}}
 
}}
  
Таким образом, <tex> \Sigma \cup \Sigma^{-1} </tex> с операцией конкатенации будет группой (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).
+
Таким образом, <tex> \Sigma \cup \Sigma^{-1} </tex> с операцией конкатенации будет [[группа|группой]] (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).
  
 
{{Определение
 
{{Определение
Строка 26: Строка 26:
 
|about=О редуцированной строке
 
|about=О редуцированной строке
 
|statement=
 
|statement=
У одной строки существует лишь одна редуцированная строка
+
У одной строки существует лишь одна редуцированная строка.
 
|proof=
 
|proof=
 
Пусть существуют 2 проредуцированные строки <tex>\omega_1</tex> и <tex>\omega_2</tex>, заданные одной строкой. Тогда существуют цепочки вставок и удалений <br>
 
Пусть существуют 2 проредуцированные строки <tex>\omega_1</tex> и <tex>\omega_2</tex>, заданные одной строкой. Тогда существуют цепочки вставок и удалений <br>
Строка 53: Строка 53:
 
}}
 
}}
  
==пример решения задачи==
+
==Пример==
Пусть группа <tex>G=\{a</tex>, <tex>b|aba=b</tex>, <tex>bab=a\}</tex>. докажем что:  
+
Пусть группа <tex>G</tex> задана соотношениями <tex>G=\{a</tex>, <tex>b|aba=b</tex>, <tex>bab=a\}</tex>. Докажем что:  
  
1)<tex>a^2=b^2</tex>
+
#<tex>a^2=b^2</tex>
 +
#<tex>a^4=b^4=e</tex>
 +
#<tex>|G|=8</tex>
  
2)<tex>a^4=b^4=e</tex>
+
'''Доказательство:'''
 
 
3)<tex>|G|=8</tex>
 
 
 
'''доказательство:'''
 
  
 
1) <tex>aba=b \Rightarrow a(bab)=bb</tex> подставляем из второго условия группы и получаем: <tex> aa=bb \Rightarrow a^2=b^2</tex>
 
1) <tex>aba=b \Rightarrow a(bab)=bb</tex> подставляем из второго условия группы и получаем: <tex> aa=bb \Rightarrow a^2=b^2</tex>
Строка 68: Строка 66:
 
2) <tex>aba=b \Rightarrow ba=a^{-1}b</tex>, <tex>bab=a \Rightarrow ab=b^{-1}a</tex>, перемножаем, получаем:<tex>abba=e</tex>, но из доказанного ранее <tex>a^2=b^2 \Rightarrow a^4=e</tex> и <tex>b^4=e</tex>
 
2) <tex>aba=b \Rightarrow ba=a^{-1}b</tex>, <tex>bab=a \Rightarrow ab=b^{-1}a</tex>, перемножаем, получаем:<tex>abba=e</tex>, но из доказанного ранее <tex>a^2=b^2 \Rightarrow a^4=e</tex> и <tex>b^4=e</tex>
  
3)Рассмотрим все последовательности из <tex>3</tex> элементов: их <tex>8</tex>. Заметим, что есть последовательности из <tex>3</tex> одинаковых элементов<tex>(ааа</tex>, <tex>bbb)</tex>, из <tex>2</tex> подряд идущих одинаковых и одного отличного<tex>(aab</tex>, <tex>bba</tex>, <tex>baa</tex>, <tex>abb)</tex> и <tex>aba</tex>, <tex>bab</tex>. Но <tex>b^2=a^2</tex>, поэтому <tex>aab=baa=b^3</tex>, <tex>bba=abb=a^3</tex>, а <tex>aba=b</tex>, <tex>bab=a</tex>, поэтому все тройки равны либо третьей либо первой степени <tex>a</tex> или <tex>b</tex>. Из таблицы умножения(приведена далее) видно, что произведения приведенной далее видно, что произведение последовательности длинное три(те <tex>a^3</tex>,<tex>b^3</tex>, <tex>a</tex>, <tex>b</tex>) не выходит за ее пределы. Те последовательность большей длинны по правилам умножения, задания <tex>G</tex> и доказанных равенств будет сокращаться до последовательности длины <tex><=2</tex> или <tex>a^3</tex> или <tex>b^3 \Rightarrow |G|=8</tex>  
+
3)Рассмотрим все последовательности из <tex>3</tex> элементов: их <tex>8</tex>. Заметим, что есть последовательности из трех одинаковых элементов: <tex>(ааа</tex>, <tex>bbb)</tex>, из <tex>2</tex> подряд идущих одинаковых и одного отличного<tex>(aab</tex>, <tex>bba</tex>, <tex>baa</tex>, <tex>abb)</tex> и <tex>aba</tex>, <tex>bab</tex>. Но <tex>b^2=a^2</tex>, поэтому <tex>aab=baa=b^3</tex>, <tex>bba=abb=a^3</tex>, а <tex>aba=b</tex>, <tex>bab=a</tex>, поэтому все тройки равны либо третьей либо первой степени <tex>a</tex> или <tex>b</tex>. Из таблицы умножения(приведена далее) видно, что произведения приведенной далее видно, что произведение последовательности длинное три(те <tex>a^3</tex>,<tex>b^3</tex>, <tex>a</tex>, <tex>b</tex>) не выходит за ее пределы. Те последовательность большей длинны по правилам умножения, задания <tex>G</tex> и доказанных равенств будет сокращаться до последовательности длины <tex><=2</tex> или <tex>a^3</tex> или <tex>b^3 \Rightarrow |G|=8</tex>  
  
 
запишем таблицу умножения для <tex>G</tex>:
 
запишем таблицу умножения для <tex>G</tex>:

Версия 02:10, 11 сентября 2010

Эта статья требует доработки!
  1. (исправлено)Необходимо добавить примеры (из тех, что были у нас в качестве задач)

Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).

Свободная группа

Рассмотрим конечный алфавит [math] \Sigma = \{ a_1, a_2, \dots a_n \}, \; \Sigma^{-1} = \{ a_1^{-1}, a_2^{-1}, \dots a_n^{-1} \} [/math].
Рассмотрим множество строк над алфавитом [math] \Sigma \cup \Sigma^{-1} ; \; S = s_1 s_2 \dots s_k , \; s_i \in \Sigma \cup \Sigma^{-1} [/math].


Определение:
[math]S[/math] и [math]S'[/math] называются эквивалентными, если они могут быть превращены друг в друга вставками и удалениями из произвольных мест [math]aa^{-1}[/math] и [math]a^{-1}a[/math].


Таким образом, [math] \Sigma \cup \Sigma^{-1} [/math] с операцией конкатенации будет группой (обратным элементом будет обращение строки с заменой всех символов на «обратные» им).


Определение:
[math] \Sigma \cup \Sigma^{-1} [/math] называется свободной группой, порожденной алфавитом [math]\Sigma[/math].


Рассмотрим строку. Проредуцируем её (будем последовательно удалять [math]aa^{-1}[/math] из нее, пока в строке не будет таких последовательностей элементов). Поставим вопрос: правда ли, что вне зависимости от последовательности удалений мы будем получать одну и ту же конечную редуцированную строку?

Теорема (О редуцированной строке):
У одной строки существует лишь одна редуцированная строка.
Доказательство:
[math]\triangleright[/math]

Пусть существуют 2 проредуцированные строки [math]\omega_1[/math] и [math]\omega_2[/math], заданные одной строкой. Тогда существуют цепочки вставок и удалений
[math]\omega_1 \rightarrow S_1 \rightarrow S_2 \dots \rightarrow S_k \rightarrow \omega_2 [/math], где [math]\rightarrow[/math] − операция вставки или удаления [math]aa^{-1}[/math]. (Существование цепочки обеспечено тем, что эти строки образованы одним элементом).

Среди цепочек рассмотрим такую, у которой минимально [math]\sum |S_i|[/math] и пусть [math]S_i[/math] − строка наибольшей длины.
Рассмотрим [math] S_{i - 1} \rightarrow S_i \rightarrow S_{i + 1} [/math], причем мы знаем, что переходы от [math]i[/math] к [math]i - 1[/math] и [math]i + 1[/math] обеспечены за счет удаления (из-за того, что длина [math]S_i[/math] максимальна). Эти переходы могут быть обеспечены за счет:

  1. Двух непересекающихся пар. Тогда пусть [math] S_{i - 1} = L_1 L_2 b b^{-1} L_3, \quad S_i = L_1 a a^{-1} L_2 b b^{-1} L_3, \quad S_{i + 1} = L_1 a a^{-1} L_2 L_3 [/math], где [math]L_1, L_2, L_3[/math] − некие строки.
    Таким образом, у нас есть часть цепочки [math]L_1 L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 b b^{-1} L_3 \rightarrow L_1 a a^{-1} L_2 L_3 [/math]. Заменим эту часть цепочки на [math]L_1 L_2 b b^{-1} L_3 \rightarrow L_1 L_2 L_3 \rightarrow L_1 a a^{-1} L_2 L_3 [/math]. Заметим, что крайние значения части цепочки от этого не изменятся, но [math]\sum |S_i|[/math] уменьшится, а это противоречит нашему предположению о минимальности суммы.
  2. Пар, пересекающихся по двум позициям. Тогда [math]S_{i-1} = S_{i+1}[/math], и можно избавиться от [math]S_{i}[/math] и [math]S_{i + 1}[/math], и от этого сумма длин слов также уменьшится.
  3. Пар, пересекающихся по одной позиции. Имеем [math]L_1 a L_2 \rightarrow L_1 a a^{-1} a L_2 \rightarrow L_1 a L_2[/math], и в этом случае мы также можем избавиться от [math]S_{i}[/math] и [math]S_{i + 1}[/math], что также уменьшит итоговую сумму длин строк.
Таким образом, мы пришли к противоречию во всех случаях, а это значит, что мы доказали теорему.
[math]\triangleleft[/math]

Задание группы определяющими соотношениями

Пусть также имеем алфавит [math]\Sigma = \{ a_1, \dots a_n \} [/math] и набор пар строк [math]S_1 \sim \omega_1, \dots, S_n \sim \omega_n[/math]. Разрешается где угодно менять [math]\omega_i[/math] на [math]S_i[/math] и наоборот.


Определение:
Выражения [math]S_1 \sim \omega_1, \dots, S_n \sim \omega_n[/math] называются определяющими соотношениями.


Утверждение (без доказательства):
Задача проверки эквивалентности строк при заданных определяющих соотношениях алгоритмически неразрешима.

Пример

Пусть группа [math]G[/math] задана соотношениями [math]G=\{a[/math], [math]b|aba=b[/math], [math]bab=a\}[/math]. Докажем что:

  1. [math]a^2=b^2[/math]
  2. [math]a^4=b^4=e[/math]
  3. [math]|G|=8[/math]

Доказательство:

1) [math]aba=b \Rightarrow a(bab)=bb[/math] подставляем из второго условия группы и получаем: [math] aa=bb \Rightarrow a^2=b^2[/math]

2) [math]aba=b \Rightarrow ba=a^{-1}b[/math], [math]bab=a \Rightarrow ab=b^{-1}a[/math], перемножаем, получаем:[math]abba=e[/math], но из доказанного ранее [math]a^2=b^2 \Rightarrow a^4=e[/math] и [math]b^4=e[/math]

3)Рассмотрим все последовательности из [math]3[/math] элементов: их [math]8[/math]. Заметим, что есть последовательности из трех одинаковых элементов: [math](ааа[/math], [math]bbb)[/math], из [math]2[/math] подряд идущих одинаковых и одного отличного[math](aab[/math], [math]bba[/math], [math]baa[/math], [math]abb)[/math] и [math]aba[/math], [math]bab[/math]. Но [math]b^2=a^2[/math], поэтому [math]aab=baa=b^3[/math], [math]bba=abb=a^3[/math], а [math]aba=b[/math], [math]bab=a[/math], поэтому все тройки равны либо третьей либо первой степени [math]a[/math] или [math]b[/math]. Из таблицы умножения(приведена далее) видно, что произведения приведенной далее видно, что произведение последовательности длинное три(те [math]a^3[/math],[math]b^3[/math], [math]a[/math], [math]b[/math]) не выходит за ее пределы. Те последовательность большей длинны по правилам умножения, задания [math]G[/math] и доказанных равенств будет сокращаться до последовательности длины [math]\lt =2[/math] или [math]a^3[/math] или [math]b^3 \Rightarrow |G|=8[/math]

запишем таблицу умножения для [math]G[/math]:

* e a b ab ba aa aaa bbb
e e a b ab ba aa aaa bbb
a a aa ab bbb b aaa e ba
b b ba aa a ab bbb ab e
ab ab b aaa aa e ba bbb a
ba ba bbb a e bb ab b aaa
aa aa aaa bbb ba ab e a b
aaa aaa e ba b bbb a aa ab
bbb bbb ab e aaa a b ba bb