Машина Тьюринга — различия между версиями
м (→Результат работы: добавлена явный квантор в определении функции) |
(добавлен пример) |
||
Строка 23: | Строка 23: | ||
* <tex>\delta : Q \times \Pi \to Q \times \Pi \times \{ \leftarrow, \rightarrow, \downarrow \}</tex> — всюду определённая функция перехода автомата | * <tex>\delta : Q \times \Pi \to Q \times \Pi \times \{ \leftarrow, \rightarrow, \downarrow \}</tex> — всюду определённая функция перехода автомата | ||
− | Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга | + | Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга. |
=== Определение процесса работы === | === Определение процесса работы === | ||
− | Кроме формального определения самой машины требуется также формально описать процесс её работы. Назовём '''конфигурацией''' машины Тьюринга тройку <tex>\langle w, q, v \rangle</tex>, где <tex>q \in Q</tex> — текущее состояние автомата, а <tex>w, v \in (\Pi \setminus \{B\})^*</tex> — строки слева и справа от головки до первого пробельного символа соответственно. В данной записи головка находится над ячейкой, на которой написана первая буква <tex>v</tex> (или <tex>B</tex>, если <tex>w = \varepsilon</tex>). | + | Кроме формального определения самой машины требуется также формально описать процесс её работы. В определении для простоты будем предполагать, что головка в процессе работы не записывает на ленту символ <tex>B</tex>. Это не ограничивает вычислительной мощности машин Тьюринга, поскольку для каждой машины можно сопоставить аналогичную ей, но не пищущую <tex>B</tex> на ленту. |
+ | |||
+ | Назовём '''конфигурацией''' машины Тьюринга тройку <tex>\langle w, q, v \rangle</tex>, где <tex>q \in Q</tex> — текущее состояние автомата, а <tex>w, v \in (\Pi \setminus \{B\})^*</tex> — строки слева и справа от головки до первого пробельного символа соответственно. В данной записи головка находится над ячейкой, на которой написана первая буква <tex>v</tex> (или <tex>B</tex>, если <tex>w = \varepsilon</tex>). | ||
В дальнейшем используются следующие обозначения: <tex>x, y, z \in \Pi</tex>, <tex>w, v \in \Pi^*</tex> | В дальнейшем используются следующие обозначения: <tex>x, y, z \in \Pi</tex>, <tex>w, v \in \Pi^*</tex> | ||
Строка 41: | Строка 43: | ||
Очевидно, что определённое отоношение является функциональным: для каждой конфигурации <tex>C</tex> существует не более одной конфигурации <tex>C'</tex>, для которой <tex>C \vdash C'</tex>. | Очевидно, что определённое отоношение является функциональным: для каждой конфигурации <tex>C</tex> существует не более одной конфигурации <tex>C'</tex>, для которой <tex>C \vdash C'</tex>. | ||
+ | |||
+ | Для машины Тьюринга, которая пишет символ <tex>B</tex> на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода. Это предоставляется читателю в качестве упражнения. | ||
=== Результат работы === | === Результат работы === | ||
Машину Тьюринга можно рассматривать как распознаватель слов языка. Пусть <tex>M</tex> — машина Тьюринга, распознаваемый ей язык определяется как <tex>\mathcal L(M) = \{ x \in \Sigma^* \mid \exists y, z \in \Pi^*: \langle \varepsilon, S, x \rangle \vdash^* \langle y, Y, z \rangle \}</tex>. | Машину Тьюринга можно рассматривать как распознаватель слов языка. Пусть <tex>M</tex> — машина Тьюринга, распознаваемый ей язык определяется как <tex>\mathcal L(M) = \{ x \in \Sigma^* \mid \exists y, z \in \Pi^*: \langle \varepsilon, S, x \rangle \vdash^* \langle y, Y, z \rangle \}</tex>. | ||
− | Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина <tex>M</tex> задаёт вычислимую функцию <tex>f</tex>, причём <tex>f(x) = y \Leftrightarrow \exists z \in \Pi^* : \langle \varepsilon, S, x \rangle \vdash^* \langle z, Y, y \rangle</tex>. Примеры машин-распознавателей и машин-преобразователей будут даны ниже. | + | Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина <tex>M</tex> задаёт вычислимую функцию <tex>f</tex>, причём <tex>f(x) = y \Leftrightarrow \exists z \in \Pi^* : \langle \varepsilon, S, x \rangle \vdash^* \langle z, Y, y \rangle</tex>. Переход автомата в состояние <tex>N</tex> можно интерпретировать как аварийное завершение программы (например, при некорретном входе). |
+ | |||
+ | Примеры машин-распознавателей и машин-преобразователей будут даны ниже. | ||
+ | |||
+ | == Примеры машин Тьюринга == | ||
+ | Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий: | ||
+ | * в стартовом состоянии головка идёт вправо от младшего бита к старшему, заменяя все единицы на нули, | ||
+ | * встретив нуль или пробельный символ головка записывает единицу, после чего переходит в состояние <tex>R</tex>, | ||
+ | * в состоянии <tex>R</tex> головка идёт влево от старшего бита к младшему, не изменяя символы 0 и 1 на ленте, | ||
+ | * встретив в состоянии <tex>R</tex> пробельный символ, головка перемещается на один символ вправо и переходит в состояние <tex>Y</tex>, завершая работу. | ||
+ | |||
+ | Следующее определение формализует данный алгоритм: | ||
+ | * <tex>\Sigma = \{0, 1 \}</tex>, <tex>\Pi = \{0, 1, B\}</tex> | ||
+ | * <tex>Q = \{S, R, Y, N \}</tex> | ||
+ | ** <tex>\delta(S, 1) = \langle S, 0, \rightarrow \rangle</tex> | ||
+ | ** <tex>\delta(S, 0) = \langle R, 1, \downarrow \rangle</tex> | ||
+ | ** <tex>\delta(S, B) = \langle R, 1, \downarrow \rangle</tex> | ||
+ | ** <tex>\delta(R, 0) = \langle R, 0, \leftarrow \rangle</tex> | ||
+ | ** <tex>\delta(R, 1) = \langle R, 1, \leftarrow \rangle</tex> | ||
+ | ** <tex>\delta(R, B) = \langle Y, B, \rightarrow \rangle</tex> |
Версия 16:23, 6 декабря 2012
Содержание
Введение
Машина Тьюринга (Turing machine) — абстрактный вычислитель, предложенный британским математиком Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
- бесконечной одномерной ленты, разделённой на ячейки,
- головкой, которая представляет из себя детерминированный конечный автомат.
При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.
Определение
Определение машины
Формально машина Тьюринга определяется как кортеж из восьми элементов
, где- — алфавит, из букв которого могут состоять входные слова
- — символы, которые могут быть записаны на ленту в процессе работы машины
- — пробельный символ (от слова blank)
- — множество состояний управляющего автомата
- — допускающее состояние автомата
- — отвергающее состояние автомата
- — стартовое состояние автомата
- — всюду определённая функция перехода автомата
Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга.
Определение процесса работы
Кроме формального определения самой машины требуется также формально описать процесс её работы. В определении для простоты будем предполагать, что головка в процессе работы не записывает на ленту символ
. Это не ограничивает вычислительной мощности машин Тьюринга, поскольку для каждой машины можно сопоставить аналогичную ей, но не пищущую на ленту.Назовём конфигурацией машины Тьюринга тройку
, где — текущее состояние автомата, а — строки слева и справа от головки до первого пробельного символа соответственно. В данной записи головка находится над ячейкой, на которой написана первая буква (или , если ).В дальнейшем используются следующие обозначения:
,Определим на конфигурациях отношение перехода
:- если , то
- если , то
- если , то
Особо следует рассмотреть случай переходов по пробельному символу:
- если , то
- если , то
- если , то
Очевидно, что определённое отоношение является функциональным: для каждой конфигурации
существует не более одной конфигурации , для которой .Для машины Тьюринга, которая пишет символ
на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода. Это предоставляется читателю в качестве упражнения.Результат работы
Машину Тьюринга можно рассматривать как распознаватель слов языка. Пусть
— машина Тьюринга, распознаваемый ей язык определяется как .Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина
задаёт вычислимую функцию , причём . Переход автомата в состояние можно интерпретировать как аварийное завершение программы (например, при некорретном входе).Примеры машин-распознавателей и машин-преобразователей будут даны ниже.
Примеры машин Тьюринга
Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий:
- в стартовом состоянии головка идёт вправо от младшего бита к старшему, заменяя все единицы на нули,
- встретив нуль или пробельный символ головка записывает единицу, после чего переходит в состояние ,
- в состоянии головка идёт влево от старшего бита к младшему, не изменяя символы 0 и 1 на ленте,
- встретив в состоянии пробельный символ, головка перемещается на один символ вправо и переходит в состояние , завершая работу.
Следующее определение формализует данный алгоритм:
- ,
-