Задача о наибольшей подпоследовательности-палиндроме — различия между версиями
(→Решение) |
(→Псевдокод) |
||
Строка 36: | Строка 36: | ||
Если же в задаче необходимо вывести не длину, а саму подпоследовательность-палиндром, то дополнительно к массиву длин мы должны построить массив переходов — для каждой ячейки запомнить, какой из случаев был реализован. | Если же в задаче необходимо вывести не длину, а саму подпоследовательность-палиндром, то дополнительно к массиву длин мы должны построить массив переходов — для каждой ячейки запомнить, какой из случаев был реализован. | ||
− | == | + | Размещаем граничные случаи: <tex>F(I, I) = 1</tex> и <tex>F(I, J) = 0</tex>, если <tex>I > J</tex>. Теперь в рассматриваемой подстроке отделяем первый символ. Есть две возможности (какая из них реализуется, пока не знаем). Отделенный символ не участвует в образовании максимального подпоследовательности-палиндрома — тогда <tex>F(I, J) = F(I + 1, J)</tex>. Если же участвует, то ищем в подстроке с конца символ, совпадающий с отделенным (пусть его позиция <tex>K</tex>), тогда <tex>F(I, J) = 2 + F(I + 1, K – 1)</tex>. Надо предусмотреть еще случай <tex>I = K</tex>, а затем отсекать рекурсию. |
− | + | Получается следующая функция: | |
+ | Function F(i, j) | ||
+ | if L[i, j] == -1 | ||
+ | k = j | ||
+ | while S[i] <> S[k] | ||
+ | k-- | ||
+ | R1 = F(i + 1, j) | ||
+ | if i <> k | ||
+ | R2 = F(i + 1, k - 1) + 2 | ||
+ | else | ||
+ | R2 = 1 | ||
+ | if R1 > R2 | ||
+ | L[i, j] = R1 | ||
+ | else | ||
+ | L[i, j] = R2 | ||
+ | return L[i, j] | ||
== Литература == | == Литература == |
Версия 21:45, 13 декабря 2012
Задача о наибольшей подпоследовательности-палиндрома — это задача поиска длины наибольшей подпоследовательности-палиндрома, которую можно получить вычеркиванием некоторых букв из данной последовательности.
Содержание
Определения
Определение: |
Палиндромом называется строка, которая одинаково читается как слева направо, так и справа налево. |
Определение: |
Подпоследовательностью-палиндромом данной строки называется последовательность символов из данной строки, не обязательно идущих подряд, являющаяся палиндромом. |
Например, HELOLEH является подпоследовательностью-палиндромом строки HTEOLFEOLEH.
Решение
Обозначим данную последовательность через
, а ее элементы — через Будем рассматривать возможные подпоследовательности данной последовательности с го по ый символ, обозначим их как . Длины максимальных палиндромов для подпоследовательностей будем записывать в квадратный массив : — длина максимальной подпоследовательности-палиндрома, который можно получить из подпоследовательности .Начнем решать задачу с простых подпоследовательностей. Для последовательности из одного элемента (то есть подпоследовательности вида
) ответ очевиден — ничего вычеркивать не надо, такая строка будет искомой подпоследовательностью-палиндромом. Для последовательности из двух элементов возможны два варианта: если элементы равны, то мы имеем подпоследовательность-палиндром, ничего вычеркивать не надо. Если же элементы не равны, то вычеркиваем любой.Пусть теперь нам дана подпоследовательность
. Если первый и последний элементы подпоследовательности не совпадают, то один из них нужно вычеркнуть. Тогда у нас останется подпоследовательность или — то есть мы сведем задачу к подзадаче: . Если же первый и последний элементы равны, то мы можем оставить оба, но необходимо знать решение задачи .Пример
Рассмотрим решение на примере последовательности ABACCBA. Первым делом заполняем диагональ массива единицами, они будут соответствовать подпоследовательностями
из одного элемента. Затем начинаем рассматривать подпоследовательности длины два. Во всех подпоследовательностях, кроме , элементы различны, поэтому в соответствующие ячейки запишем , а в — .Получается, что мы будем заполнять массив по диагоналям, начиная с главной диагонали, ведущей из левого верхнего угла в правый нижний. Для подпоследовательностей длины
получаются следующие значения: в подпоследовательности ABA первый и последний элемент равны, поэтому . В остальных подпоследовательностях первый и последний элементы различны.BAC:
ACC:
CCB:
CBA:
Продолжая далее аналогичные рассуждения, заполним все ячейки под диагональю и в ячейке
получим ответ .Если же в задаче необходимо вывести не длину, а саму подпоследовательность-палиндром, то дополнительно к массиву длин мы должны построить массив переходов — для каждой ячейки запомнить, какой из случаев был реализован.
Размещаем граничные случаи:
и , если . Теперь в рассматриваемой подстроке отделяем первый символ. Есть две возможности (какая из них реализуется, пока не знаем). Отделенный символ не участвует в образовании максимального подпоследовательности-палиндрома — тогда . Если же участвует, то ищем в подстроке с конца символ, совпадающий с отделенным (пусть его позиция ), тогда . Надо предусмотреть еще случай , а затем отсекать рекурсию. Получается следующая функция:Function F(i, j) if L[i, j] == -1 k = j while S[i] <> S[k] k-- R1 = F(i + 1, j) if i <> k R2 = F(i + 1, k - 1) + 2 else R2 = 1 if R1 > R2 L[i, j] = R1 else L[i, j] = R2 return L[i, j]