Алгоритм Борувки — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Описание алгоритма)
(Описание алгоритма)
Строка 3: Строка 3:
  
 
==Описание алгоритма==
 
==Описание алгоритма==
 +
Пусть <tex>T</tex> подграф графа <tex>G</tex>.Изначально содержит все вершины из <tex>G</tex> и не содержит ребер.
 
Будем добавлять в <tex>T</tex> ребра следующим образом:  
 
Будем добавлять в <tex>T</tex> ребра следующим образом:  
  

Версия 02:48, 15 декабря 2012

Алгоритм Борувки — алгоритм поиска минимального остовного дерева (minimum spanning tree, MST) во взвешенном неориентированном связном графе. Впервые был опубликован в 1926 году Отакаром Борувкой.

Описание алгоритма

Пусть [math]T[/math] подграф графа [math]G[/math].Изначально содержит все вершины из [math]G[/math] и не содержит ребер. Будем добавлять в [math]T[/math] ребра следующим образом:

Пока [math]T[/math] не является деревом

  1. Для каждой компоненты связанности находим минимальное по весу ребро, которое связывает вершину из данной компоненты с вершиной, не принадлежащей данной компоненте.
  2. Добавим в [math]T[/math] все ребра, которые хотя бы для одной компоненты оказались минимальными.

Получившееся множество [math]T[/math] является минимальным остовным деревом графа [math]G[/math].

Реализация

  Graph Boruvka(Graph G)
      while T.size < n
           init()                                            // у вершины есть поле comp(компонента которой принадлежит вершина) 
           findComp(T)                                       // разбиваеv граф T на компоненты связынности обычным dfs-ом
           for uv [math]\in[/math] E
               if u.comp != v.comp
                   if minEdge[u.comp].w < uv.w
                       minEdge[u.comp] = uv
                   if minEdge[v.comp].w < uv.w
                       minEdge[v.comp] = uv)
           for k [math]\in[/math] Comp                                         // Comp — множество компонент связанности в T
                   T.addEdge(minEdge[k])
      return T;     

Асимптотика

Время работы внутри главного цикла будет равно [math]O(E + V)[/math] + [math]O(E)[/math] + [math]O(V)[/math] = [math]O(E)[/math].

Количество итераций которое выполняется главным циклом равно [math]O(\log{V})[/math] т.к на каждой итерации количество компонент связанности уменьшается в 2 раза(изначально компонент равно [math]|V|[/math], в итоге должна стать одна компонента).

Общее время работы алгоритма получается [math]O(E\log{V})[/math]

Литература

  • Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)

См. также