Теорема Холла — различия между версиями
(→Теорема) |
(→Определения) |
||
Строка 2: | Строка 2: | ||
==Определения== | ==Определения== | ||
− | Пусть <tex>G(V,E)</tex> - двудольный граф. | + | Пусть <tex>G(V,E)</tex> - двудольный граф. <tex>L</tex> - множество вершин первой доли. <tex>R</tex> - множество вершин правой доли. |
{{Определение | {{Определение | ||
|id=def1. | |id=def1. |
Версия 19:11, 22 декабря 2012
Содержание
Определения
Пусть
- двудольный граф. - множество вершин первой доли. - множество вершин правой доли.Определение: |
Полным(совершенным) паросочетанием называется паросочетание в которое входят все вершины. |
Определение: |
Пусть | . Множeство соседей определим формулой:
Теорема
Теорема (Холл): |
Полное паросочетание существует тогда и только тогда, когда для любого выполнено . |
Доказательство: |
|