Теорема Холла — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема)
(Теорема)
Строка 20: Строка 20:
 
|statement=Полное паросочетание существует тогда и только тогда, когда для любого <tex>A \subset  L </tex> выполнено <tex>|A| \leq |N(A)|</tex>.
 
|statement=Полное паросочетание существует тогда и только тогда, когда для любого <tex>A \subset  L </tex> выполнено <tex>|A| \leq |N(A)|</tex>.
 
|proof=
 
|proof=
* Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset  L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же соседей.
+
* Очевидно, что если существует полное паросочетание, то для любого <tex>A \subset  L </tex> выполнено <tex>|A| \leq |N(A)|</tex>. У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию").
 
Пусть граф <tex>G'</tex> изначально имеет левую долю <tex>L'</tex>, которая содержит одну любую вершину из L, и правую <tex>R' = R</tex>
 
Пусть граф <tex>G'</tex> изначально имеет левую долю <tex>L'</tex>, которая содержит одну любую вершину из L, и правую <tex>R' = R</tex>
 
*В обратную сторону докажем по индукции(будем добавлять вершину <tex>x</tex> из <tex>L</tex> в <tex>L'</tex> и доказывать что в L' есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что в <tex>G'</tex> совпадает с <tex>G</tex>. Из этого будет следовать существование в <tex>G</tex>  
 
*В обратную сторону докажем по индукции(будем добавлять вершину <tex>x</tex> из <tex>L</tex> в <tex>L'</tex> и доказывать что в L' есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что в <tex>G'</tex> совпадает с <tex>G</tex>. Из этого будет следовать существование в <tex>G</tex>  

Версия 20:45, 22 декабря 2012

Определения

Пусть [math]G(V,E)[/math] - двудольный граф. [math]L[/math] - множество вершин первой доли. [math]R[/math] - множество вершин правой доли.

Определение:
Полным(совершенным) паросочетанием называется паросочетание в которое входят все вершины.


Определение:
Пусть [math]X \subset V [/math]. Множeство соседей [math]X[/math] определим формулой: [math]N(X)= \{ y \in V: (x,y) \in E \}[/math]


Теорема

Теорема (Холл):
Полное паросочетание существует тогда и только тогда, когда для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math].
Доказательство:
[math]\triangleright[/math]
  • Очевидно, что если существует полное паросочетание, то для любого [math]A \subset L [/math] выполнено [math]|A| \leq |N(A)|[/math]. У любого подмножества вершин есть по крайней мере столько же "соседей"("соседи по парасочетанию").

Пусть граф [math]G'[/math] изначально имеет левую долю [math]L'[/math], которая содержит одну любую вершину из L, и правую [math]R' = R[/math]

  • В обратную сторону докажем по индукции(будем добавлять вершину [math]x[/math] из [math]L[/math] в [math]L'[/math] и доказывать что в L' есть паросочетание, насыщающее все вершины из L'). Таким образом, в конце получим что в [math]G'[/math] совпадает с [math]G[/math]. Из этого будет следовать существование в [math]G[/math]
  1. База: Одна вершина соединена хотя бы с одной вершиной из R. Следовательно база верна.
  2. Переход: Пусть после k добавлений в G' можно построить паросочетание P, насыщающее все вершины из L'. Докажем что после добавления вершины x в G' будет существовать паросочетание насыщающее все вершины L'. Рассмотрим L' + x. Рассмотрим все вершины достижимые из x в G', если можно ходить из R' в L' только по ребрам P, а из L' в R' по любым ребрам из G'.
[math]\triangleleft[/math]

Ссылки

Смотри также