Блокирующий поток — различия между версиями
VVolochay (обсуждение | вклад)  | 
				|||
| Строка 4: | Строка 4: | ||
}}  | }}  | ||
| − | [[Файл:Блокпоток.png|240px|thumb|right|Рис. 1]]  | + | [[Файл:Блокпоток.png|240px|thumb|right|Рис. 1. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]]  | 
Блокирующий поток не обязательно максимален (пример: см. рис. 1). [[Теорема Форда-Фалкерсона]] говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся <tex>s \leadsto t</tex> пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети.  | Блокирующий поток не обязательно максимален (пример: см. рис. 1). [[Теорема Форда-Фалкерсона]] говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся <tex>s \leadsto t</tex> пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети.  | ||
| + | |||
| + | Более того, величина блокирующего потока может быть сколь угодно мала по сравнению с величиной максимального потока в сети (пример: см. рис. 2).  | ||
== См. также ==  | == См. также ==  | ||
Версия 00:14, 25 декабря 2012
| Определение: | 
| Блокирующий поток — такой поток в данной сети , что любой путь содержит насыщенное этим потоком ребро. Иными словами, в данной сети не найдётся такого пути из истока в сток, вдоль которого можно беспрепятственно увеличить поток. | 
Блокирующий поток не обязательно максимален (пример: см. рис. 1). Теорема Форда-Фалкерсона говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети.
Более того, величина блокирующего потока может быть сколь угодно мала по сравнению с величиной максимального потока в сети (пример: см. рис. 2).