Теорема Банаха об обратном операторе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 26: Строка 26:
 
<tex> (I - C)S_n = I - C^{n + 1} </tex>. Устремляя <tex> n </tex> к бесконечности, получаем <tex> (I - C)S = I </tex>, а значит <tex> S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} </tex> {{---}} ограниченный оператор.
 
<tex> (I - C)S_n = I - C^{n + 1} </tex>. Устремляя <tex> n </tex> к бесконечности, получаем <tex> (I - C)S = I </tex>, а значит <tex> S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} </tex> {{---}} ограниченный оператор.
  
 +
}}
 +
 +
Трактовка этой теоремы: <tex> Ix = x </tex>, <tex> I </tex> {{---}} непрерывно обратимый оператор. При каких условиях на оператор <tex> C </tex> оператор <tex> I - C </tex> сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда <tex> \| C \| < 1 </tex>, то есть "при малых возмущениях <tex> I </tex> сохраняется его непрерывная обратимость".
 +
 +
Далее считаем, что пространства <tex> X </tex> и <tex> Y </tex> {{---}} всегда банаховы.
 +
 +
{{Определение
 +
|definition=
 +
Рассмотрим уравнение <tex> Ax = y </tex> при заданном <tex> y </tex>. Если для такого уравнения можно написать <tex> \| x \| \le \alpha \| y \| </tex>, где <tex> \alpha </tex> {{---}} константа, то говорят, что это уравнение '''допускает априорную оценку решений'''.
 +
{{TODO|t=Это для всех y сразу, или для каждого y своя константа?}}
 +
}}
 +
 +
<tex> R(A) = \{ Ax \mid x \in X \} </tex> {{---}} область значений оператора <tex> A </tex>, является линейным множеством, но может быть незамкнутым. Однако, верно следующее:
 +
 +
{{Утверждение
 +
|statement=
 +
Если <tex> A </tex> непрерывен, и уравнение <tex> Ax = y </tex> допускает априорную оценку решений, то <tex> R(A) = \mathrm{Cl} R(A) </tex>.
 +
|proof=
 +
Возьмем сходящуюся последовательсть <tex> y_n \in R(A), y_n \to y </tex>. Нужно проверить, правда ли <tex> y \in R(A) </tex>, или, что то же самое, что уравнение <tex> Ax = y </tex> имеет решение для такого <tex> y </tex>.
 +
 +
<tex> y_n \to y \implies \| y_n - y_m \| \to 0 </tex>. Можно выбрать такую подпоследовательность <tex> y_n </tex>, что для этой подпоследовательности после перенумерации будет выполняться <tex> \| y_n - y_{n+1} \| < \frac 1{2^n} </tex>.
 +
 +
По линейности <tex> R(A) </tex>: <tex> y_{n+1} - y_n \in R(A) </tex> и для любого <tex> n </tex> существует <tex> x_n: A x_n = y_{n+1} - y_n </tex>.
 +
 +
Поскольку уравнение <tex> Ax = y </tex> допускает априорную оценку решений, имеем <tex> \| x_n \| \le \alpha \| y_{n+1} - y_n \| </tex>.
 +
 +
Рассмотрим следующий ряд: <tex> \sum\limits_{n=1}^{\infty} x_n </tex>. Сумма ряда из норм: <tex> \sum\limits_{n=1}^{\infty} \| x_n \| \le \alpha \sum\limits_{n=1}^{\infty} \| y_{n+1} - y_n \| \le \alpha \sum\limits_{n=1}^{\infty} \frac 1{2^n} = \alpha </tex>. По банаховости <tex> X </tex> получаем, что <tex> \sum\limits_{n=1}^{\infty} x_n </tex> сходится, и <tex> \sum\limits_{n=1}^{\infty} x_n = x </tex>.
 +
 +
По непрерывности <tex> A </tex> получаем, что <tex> Ax = A \sum\limits_{n=1}^{\infty} x_n = \sum\limits_{n=1}^{\infty} A x_n = \sum\limits_{n=1}^{\infty} y_{n+1} - y_n = y - y_1 </tex>.
 +
 +
<tex> Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) </tex>, поэтому <tex> y \in R(A) </tex>.
 
}}
 
}}

Версия 06:09, 4 января 2013

Эта статья находится в разработке!


Определение:
Оператор [math] A : X \to Y [/math] называется непрерывно обратимым, если существует [math] A^{-1} : Y \to X [/math] и [math] \| A^{-1} \| \lt \infty [/math].


Теорема:
Пусть [math] X [/math] — B-пространство, оператор [math] C : X \to X, C \in \mathbb{L}(X) [/math] и [math] \| C \| \lt 1 [/math]. Тогда оператор [math] I - C [/math], где [math] I [/math] — тождественный оператор, непрерывно обратим.
Доказательство:
[math]\triangleright[/math]

[math] \mathbb{L}(X) [/math] — B-пространство.

Рассмотрим следующие суммы: [math] S_n = \sum\limits_{k=0}^n C^k [/math].

[math] (I - C)S_n = \sum\limits_{k=0}^n (C^k - C^{k + 1}) = I - C^{n + 1} [/math].

[math] \sum\limits_{k=0}^{\infty} C^k [/math] — ряд в B-пространстве [math] \mathbb{L}(X) [/math] сходится, если сходится ряд из соответствующих норм. Из того, что [math] \| C^k \| \le \| C \|^k [/math], получаем [math] \| \sum\limits_{k=0}^{\infty} C^k \| \le \sum\limits_{k=0}^{\infty} \| C^k \| = \frac 1{1 - \| C \|} \lt \infty [/math].

Так как [math] \| C \| \lt 1 [/math], то существует такой [math] S \in \mathbb{L}(X) [/math], что [math] S = \sum\limits_{k=0}^{\infty} C^k [/math].

[math] S_n \xrightarrow[n \to \infty]{} S [/math]. Поскольку [math] \| C \| \lt 1 [/math], то [math] \| C^k \| \to 0 [/math], а значит, и [math] C^k \to 0 [/math]. TODO: красивый ноль

[math] (I - C)S_n = I - C^{n + 1} [/math]. Устремляя [math] n [/math] к бесконечности, получаем [math] (I - C)S = I [/math], а значит [math] S = \sum\limits_{k=0}^{\infty} C^k = (I - C)^{-1} [/math] — ограниченный оператор.
[math]\triangleleft[/math]

Трактовка этой теоремы: [math] Ix = x [/math], [math] I [/math] — непрерывно обратимый оператор. При каких условиях на оператор [math] C [/math] оператор [math] I - C [/math] сохраняет ннепрерывную обратимость? Из теоремы выше известен ответ на этот вопрос: когда [math] \| C \| \lt 1 [/math], то есть "при малых возмущениях [math] I [/math] сохраняется его непрерывная обратимость".

Далее считаем, что пространства [math] X [/math] и [math] Y [/math] — всегда банаховы.


Определение:
Рассмотрим уравнение [math] Ax = y [/math] при заданном [math] y [/math]. Если для такого уравнения можно написать [math] \| x \| \le \alpha \| y \| [/math], где [math] \alpha [/math] — константа, то говорят, что это уравнение допускает априорную оценку решений. TODO: Это для всех y сразу, или для каждого y своя константа?


[math] R(A) = \{ Ax \mid x \in X \} [/math] — область значений оператора [math] A [/math], является линейным множеством, но может быть незамкнутым. Однако, верно следующее:

Утверждение:
Если [math] A [/math] непрерывен, и уравнение [math] Ax = y [/math] допускает априорную оценку решений, то [math] R(A) = \mathrm{Cl} R(A) [/math].
[math]\triangleright[/math]

Возьмем сходящуюся последовательсть [math] y_n \in R(A), y_n \to y [/math]. Нужно проверить, правда ли [math] y \in R(A) [/math], или, что то же самое, что уравнение [math] Ax = y [/math] имеет решение для такого [math] y [/math].

[math] y_n \to y \implies \| y_n - y_m \| \to 0 [/math]. Можно выбрать такую подпоследовательность [math] y_n [/math], что для этой подпоследовательности после перенумерации будет выполняться [math] \| y_n - y_{n+1} \| \lt \frac 1{2^n} [/math].

По линейности [math] R(A) [/math]: [math] y_{n+1} - y_n \in R(A) [/math] и для любого [math] n [/math] существует [math] x_n: A x_n = y_{n+1} - y_n [/math].

Поскольку уравнение [math] Ax = y [/math] допускает априорную оценку решений, имеем [math] \| x_n \| \le \alpha \| y_{n+1} - y_n \| [/math].

Рассмотрим следующий ряд: [math] \sum\limits_{n=1}^{\infty} x_n [/math]. Сумма ряда из норм: [math] \sum\limits_{n=1}^{\infty} \| x_n \| \le \alpha \sum\limits_{n=1}^{\infty} \| y_{n+1} - y_n \| \le \alpha \sum\limits_{n=1}^{\infty} \frac 1{2^n} = \alpha [/math]. По банаховости [math] X [/math] получаем, что [math] \sum\limits_{n=1}^{\infty} x_n [/math] сходится, и [math] \sum\limits_{n=1}^{\infty} x_n = x [/math].

По непрерывности [math] A [/math] получаем, что [math] Ax = A \sum\limits_{n=1}^{\infty} x_n = \sum\limits_{n=1}^{\infty} A x_n = \sum\limits_{n=1}^{\infty} y_{n+1} - y_n = y - y_1 [/math].

[math] Ax = y - y_1, y = Ax + y_1 = Ax + A x_0 = A(x + x_0) [/math], поэтому [math] y \in R(A) [/math].
[math]\triangleleft[/math]