Нормированные пространства (3 курс) — различия между версиями
Sementry (обсуждение | вклад) |
Sementry (обсуждение | вклад) м (уф) |
||
| Строка 86: | Строка 86: | ||
Таким образом, получили обе части двойного неравенства. | Таким образом, получили обе части двойного неравенства. | ||
}} | }} | ||
| + | |||
| + | Замечание: подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
| − | Пусть <tex>X</tex> — НП и <tex>Y</tex> — линейное конечномерное | + | Пусть <tex>X</tex> — НП и <tex>Y</tex> — линейное конечномерное подмножество в <tex>X</tex>, тогда <tex>Y</tex> — замкнуто в <tex>X</tex>, т.е. |
<tex>\mathrm{Cl} Y = Y</tex>. | <tex>\mathrm{Cl} Y = Y</tex>. | ||
|proof= | |proof= | ||
| − | }} | + | Пусть для произвольного <tex>y \in X</tex>, <tex>y_m \in Y, y_m \to y, Y = \mathcal L(e_1, \ldots, e_n), \|\cdot\|</tex> --- исходная норма. |
| + | |||
| + | <tex>y = \sum\limits_{k=1}^{n} \alpha_k e_k</tex>, пусть <tex>\|y\|_2 = \max\{|\alpha_1|, \ldots, |\alpha_n|\}</tex>. | ||
| + | |||
| + | По теореме Рисса, нормы <tex>\|\cdot\|</tex> и <tex>\|\cdot\|_2</tex> в <tex>Y</tex> эквивалентны; в <tex>\|\cdot\|_2</tex>, очевидно, есть покоординатная сходимость. | ||
| + | |||
| + | Возьмем еще одну последовательность <tex>y_p \to y</tex>, <tex>\|y_m - y_p\| \to 0 \Rightarrow \|y_m - y_p\|_2 \to 0</tex>. | ||
| + | |||
| + | Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | ||
| + | |||
| + | По полноте вещественной оси, все <tex>n</tex> последовательностей сходятся: <tex>\forall k = 1, \ldots, n: \alpha_k^(p) \to \alpha_k^*</tex>. | ||
| − | + | Так как <tex>\|y_m - y^*\| \to 0</tex> и <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k \in Y</tex>, то <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | |
| − | + | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математическогог анализа получается очень непросто. | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
== Ссылки == | == Ссылки == | ||
Версия 02:50, 5 января 2013
| Определение: |
Линейное (векторное) пространство над полем — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
|
| Определение: |
Функция называется нормой в пространстве , если для нее выполняется:
|
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
| Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
|
Пусть . Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью ,. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
| Определение: |
| Нормированное пространство называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности. |
| Определение: |
| Нормы , эквивалентны, если существуют константы такие, что . Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть выполняется рефлексивность, симметриченость и транзитивность). |
Это определение равносильно тому, что сходимость последовательностей в них равносильна: . Несложно показать, что из взаимной ограниченности норм следует равносходимость. В обратную сторону: ???.
| Определение: |
| Пространство конечномерно, если . |
| Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
| Доказательство: |
|
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме. Выберем и зафиксируем в пространстве произвольный базис . 1. , (по неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. Таким образом, получили . 2. Теперь надо доказать, что Рассмотрим единичный шар по норме : , является компактом в (TODO: почему? может, тут есть подсказка). Рассмотрим на нем функцию , . Покажем, что она непрерывна: , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как непрерывна на , то по теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда тогда , что означает, что , то есть . Теперь рассмотрим произвольный ненулевой , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . Таким образом, получили обе части двойного неравенства. |
Замечание: подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами.
| Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
| Доказательство: |
|
Пусть для произвольного , --- исходная норма. , пусть . По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость. Возьмем еще одну последовательность , . Вследствие покоординатной сходимости, . По полноте вещественной оси, все последовательностей сходятся: . Так как и , то и . |
Пример: , — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математическогог анализа получается очень непросто.