Обсуждение:Нормированные пространства (3 курс) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
== аппроксимационная теорема Вейерштрасса (Стоуна-Вейерштрасса) ==
 
== аппроксимационная теорема Вейерштрасса (Стоуна-Вейерштрасса) ==
 
Может быть, можно как-то воспользоваться следствием и очень просто доказать ее, но в моем конспекте она вообще не упомянута. --[[Участник:Sementry|Мейнстер Д.]] 01:12, 5 января 2013 (GST)
 
Может быть, можно как-то воспользоваться следствием и очень просто доказать ее, но в моем конспекте она вообще не упомянута. --[[Участник:Sementry|Мейнстер Д.]] 01:12, 5 января 2013 (GST)
 +
: UPD: Похоже, речь шла о том, что в теореме Вейерштрасса максимальная степень полинома не ограничена, и пространство вообще всех полиномов замкнутым не является, но это {{---}} так, маловажное замечание. --[[Участник:Sementry|Мейнстер Д.]] 04:08, 5 января 2013 (GST)

Версия 03:08, 5 января 2013

Это определение равносильно тому, что сходимость последовательностей в них равносильна: $x_n \xrightarrow[]{\|\|_1} x \Leftrightarrow x_n \xrightarrow[]{\|\|_2} x$. Несложно показать, что из взаимной ограниченности норм следует равносходимость. В обратную сторону: ???.

А у меня в конспекте ничего не сказано про равносильность определений, более того, подозреваю, что это неверно. --Мейнстер Д. 01:02, 5 января 2013 (GST)

TODO: сначала надо что-то сказать про изоморфность конечномерных пространств, чтоли?

WAT? Вроде бы, все согласуется с определением конечномерного пространства, возможно, я чего-то не понял, но пока удолил --Мейнстер Д. 01:02, 5 января 2013 (GST)

аппроксимационная теорема Вейерштрасса (Стоуна-Вейерштрасса)

Может быть, можно как-то воспользоваться следствием и очень просто доказать ее, но в моем конспекте она вообще не упомянута. --Мейнстер Д. 01:12, 5 января 2013 (GST)

UPD: Похоже, речь шла о том, что в теореме Вейерштрасса максимальная степень полинома не ограничена, и пространство вообще всех полиномов замкнутым не является, но это — так, маловажное замечание. --Мейнстер Д. 04:08, 5 января 2013 (GST)