Контексты и синтаксические моноиды — различия между версиями
Строка 12: | Строка 12: | ||
Язык <tex>L</tex> {{---}} регулярный <tex>\Leftrightarrow</tex> множество <tex>\{C_L^R(y) \mid y \in \sum^*\}</tex> его правых контекстов конечно | Язык <tex>L</tex> {{---}} регулярный <tex>\Leftrightarrow</tex> множество <tex>\{C_L^R(y) \mid y \in \sum^*\}</tex> его правых контекстов конечно | ||
|proof= | |proof= | ||
+ | <tex>\Leftarrow</tex>: | ||
+ | |||
<tex>\Rightarrow</tex>: | <tex>\Rightarrow</tex>: | ||
Пусть <tex>L</tex> {{---}} регулярный. Тогда существует автомат <tex>A</tex>, распознающий его. Рассмотрим произвольное слово <tex>y</tex>. Пусть <tex>u</tex> {{---}} состояние <tex>A</tex>, в которое можно перейти из начального по слову <tex>y</tex>. Тогда <tex>C_L^R(y)</tex> совпадает с множеством слов, по которых из состояния <tex>u</tex> можно попасть в допускающее. Причем если по какому-то слову <tex>z</tex> тоже можно перейти из начального состояния в <tex>u</tex>, то <tex>C_L^R(y) = C_L^R(z)</tex>. Наоборот, если <tex>C_L^R(y) = C_L^R(z)</tex>, то состояния, в которые можно перейти по словам <tex>y</tex> и <tex>z</tex>, эквивалентны. Таким образом, можно установить взаимное соответствие между правыми контекстами и классами эквивалентности вершин автомата, которых конечное число. | Пусть <tex>L</tex> {{---}} регулярный. Тогда существует автомат <tex>A</tex>, распознающий его. Рассмотрим произвольное слово <tex>y</tex>. Пусть <tex>u</tex> {{---}} состояние <tex>A</tex>, в которое можно перейти из начального по слову <tex>y</tex>. Тогда <tex>C_L^R(y)</tex> совпадает с множеством слов, по которых из состояния <tex>u</tex> можно попасть в допускающее. Причем если по какому-то слову <tex>z</tex> тоже можно перейти из начального состояния в <tex>u</tex>, то <tex>C_L^R(y) = C_L^R(z)</tex>. Наоборот, если <tex>C_L^R(y) = C_L^R(z)</tex>, то состояния, в которые можно перейти по словам <tex>y</tex> и <tex>z</tex>, эквивалентны. Таким образом, можно установить взаимное соответствие между правыми контекстами и классами эквивалентности вершин автомата, которых конечное число. | ||
Строка 48: | Строка 50: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Синтаксическим моноидом''' языка <tex>L</tex> называется множество его двухсторонних контекстов с введенной на нем операцией | + | '''Синтаксическим моноидом''' языка <tex>L</tex> называется множество его двухсторонних контекстов с введенной на нем операцией конкатенации <tex>\circ</tex>, где <tex>C_L(y) \circ C_L(z) = C_L(yz)</tex>. Нейтральным элементом в нем является <tex>C_L(\varepsilon)</tex> |
}} | }} | ||
+ | Размер синтаксического моноида является мерой структурной сложности языка. Заметим, что если язык распознается автоматом из <tex>n</tex> состояний, размер его синтаксического моноида не превосходит <tex>n^n</tex>. |
Версия 08:04, 30 сентября 2010
Эта статья находится в разработке!
Контексты
Правый
Определение: |
Правым контекстом | слова в языке называется множество .
Утверждение: |
Язык — регулярный множество его правых контекстов конечно |
: Пусть : — регулярный. Тогда существует автомат , распознающий его. Рассмотрим произвольное слово . Пусть — состояние , в которое можно перейти из начального по слову . Тогда совпадает с множеством слов, по которых из состояния можно попасть в допускающее. Причем если по какому-то слову тоже можно перейти из начального состояния в , то . Наоборот, если , то состояния, в которые можно перейти по словам и , эквивалентны. Таким образом, можно установить взаимное соответствие между правыми контекстами и классами эквивалентности вершин автомата, которых конечное число. |
Левый
Определение: |
Левым контекстом | слова в языке называется множество .
Утверждение: |
Язык — регулярный множество его левых контекстов конечно |
Поскольку множество регулярных языков замкнуто относительно операции разворота, то из того, что | и аналогичного утверждения о правых контекстах получаем требуемое.
Двухсторонний
Определение: |
Двухсторонним контекстом | слова в языке называется множество .
Теорема: |
Язык — регулярный множество его двухсторонних контекстов конечно |
Доказательство: |
|
Синтаксический моноид
Определение: |
Синтаксическим моноидом языка | называется множество его двухсторонних контекстов с введенной на нем операцией конкатенации , где . Нейтральным элементом в нем является
Размер синтаксического моноида является мерой структурной сложности языка. Заметим, что если язык распознается автоматом из
состояний, размер его синтаксического моноида не превосходит .