Теорема Банаха-Штейнгауза — различия между версиями
(В определении поточечной и равномерной ограниченности строгое неравенство.) |
м (bugfix) |
||
Строка 30: | Строка 30: | ||
Так как <tex>Y</tex> - банахово, то существует <tex>c \in \bigcap\limits_{m=1}^{\infty} \overline V_{n_m}</tex>, <tex>\sup\limits_{m} \|A_{n_m}(c)\| < +\infty</tex>. | Так как <tex>Y</tex> - банахово, то существует <tex>c \in \bigcap\limits_{m=1}^{\infty} \overline V_{n_m}</tex>, <tex>\sup\limits_{m} \|A_{n_m}(c)\| < +\infty</tex>. | ||
− | Но <tex>\forall m: \|A_{n_m}(c)\| > m | + | Но <tex>\forall m: \|A_{n_m}(c)\| > m</tex>, то есть, <tex>\sup\limits_{m} \|A_{n_m}(c)\| = +\infty</tex>. Получили противоречие, значит, такой шар <tex>\overline V(a, r)</tex> найдется, пусть на нем последовательность операторов ограничена константой <tex>M</tex>. Заметим, любому <tex>x \in \overline K(0, 1)</tex> в соответствие можно поставить <tex>x' \in \overline K(a, r)</tex> как <tex>x' = r x + a</tex>, тогда <tex>\| A_n x \| = {\|A_n x' - A_n a\| \over r} \le {M + \|A_n a\| \over r}</tex>. По поточечной ограниченности операторов, <tex>\exists M_1: \|A_n a\| \le M_1</tex>, таким образом, <tex>\|A_n x\| \le {M + M_1 \over r}</tex>, то есть ограничена константой, не зависящей от <tex>n</tex>. |
}} | }} | ||
Версия 13:41, 15 января 2013
Эта статья находится в разработке!
Будем рассматривать последовательность операторов
.Определение: |
Последовательность | поточечно ограничена, если .
Определение: |
Последовательность | равномерно ограничена, если .
Теорема (Банах, Штейнгауз, принцип равномерной ограниченности): |
Пусть — банахово, , поточечно ограничена. Тогда равномерно ограничена. |
Доказательство: |
Сначала покажем, что существует замкнутый шар , в котором последовательнось ограничена. Покажем от противного, пусть такого шара нет, возьмем тогда произвольный замкнутый шар , в нем .Тогда в силу неограниченности найдется ; непрерывен, значит, можно взять , где .Опять в силу неограниченности найдется ; непрерывен, берем , где .Продолжая таким образом, выстраиваем последовательность вложенных шаров .Так как Но - банахово, то существует , . , то есть, . Получили противоречие, значит, такой шар найдется, пусть на нем последовательность операторов ограничена константой . Заметим, любому в соответствие можно поставить как , тогда . По поточечной ограниченности операторов, , таким образом, , то есть ограничена константой, не зависящей от . |
Ссылочки: