Композиция отношений — различия между версиями
м (<math> -> <tex>) |
|||
Строка 1: | Строка 1: | ||
− | |||
Композицией бинарных отношений <tex>R\subseteq A\times B</tex> и <tex>S\subseteq B\times C</tex> называется такое отношение <tex> (R \circ S) \subseteq A\times C</tex>, что: | Композицией бинарных отношений <tex>R\subseteq A\times B</tex> и <tex>S\subseteq B\times C</tex> называется такое отношение <tex> (R \circ S) \subseteq A\times C</tex>, что: | ||
− | <tex>\forall a \in A, c \in C : a (R \circ S) c \Leftrightarrow \exists b \in B | + | <tex>\forall a \in A, c \in C : a (R \circ S) c \Leftrightarrow \exists b \in B : (a R b) \wedge (b S c) </tex>. |
Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> - отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> - отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> - отношение "можно добраться из А в Б, сначала проехав на поезде, а потом на автобусе(только по одному разу)". | Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> - отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> - отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> - отношение "можно добраться из А в Б, сначала проехав на поезде, а потом на автобусе(только по одному разу)". | ||
Строка 30: | Строка 29: | ||
''Ядром отношения'' R называется отношение <tex> R\circ R^{-1} </tex> | ''Ядром отношения'' R называется отношение <tex> R\circ R^{-1} </tex> | ||
− | Оно симметрично: <tex> a (R \circ R^{-1}) b \Leftrightarrow \exists c: (a R c) \wedge (c R^{-1} b) \Leftrightarrow \exists c: (b R c) \wedge (c R^{-1} a) \Leftrightarrow b (R \circ R^{-1} ) a</tex> | + | Оно [[Симметричное отношение|симметрично]]: <tex> a (R \circ R^{-1}) b \Leftrightarrow \exists c: (a R c) \wedge (c R^{-1} b) \Leftrightarrow \exists c: (b R c) \wedge (c R^{-1} a) \Leftrightarrow b (R \circ R^{-1} ) a</tex> |
Версия 00:50, 4 октября 2010
Композицией бинарных отношений
и называется такое отношение , что:.
Примером такого отношения может служить отношение на некотором множестве
населенных пунктов - отношение "можно доехать на поезде", а - отношение "можно доехать на автобусе". Тогда отношение - отношение "можно добраться из А в Б, сначала проехав на поезде, а потом на автобусе(только по одному разу)".Степень отношений
Степень отношения
, определяется следующим образом:
;
В связи с этим понятием, также вводятся обозначения:
Транзитивное замыкание отношения R
-Обратное отношение
Отношение
называют обратным для отношения , если:
Ядром отношения R называется отношение
Оно симметрично: