Сопряжённый оператор — различия между версиями
(→Теоремы о множестве значений оператора: снимаю лок) |
Rybak (обсуждение | вклад) (→Естественное вложение) |
||
Строка 12: | Строка 12: | ||
Покажем, что между <tex> E </tex> и <tex> E^{**} </tex> существует так называемый '''естественный изоморфизм''', сохраняющий норму точки. | Покажем, что между <tex> E </tex> и <tex> E^{**} </tex> существует так называемый '''естественный изоморфизм''', сохраняющий норму точки. | ||
− | Введем <tex> F_x </tex> следующим образом: <tex> F_x (f) = f(x), f \in E^{*} </tex>. | + | Введем <tex> F_x </tex> следующим образом: <tex>\forall x \in E : F_x (f) = f(x), f \in E^{*} </tex>. |
− | <tex> F_x : E^{*} \to \mathbb{R} </tex>, | + | <tex> F_x : E^{*} \to \mathbb{R} </tex> — функционал, заданный на <tex>E</tex>, то есть <tex> F_x \in E^{**} </tex>. |
Тогда само <tex> F </tex> отображает <tex> E </tex> в <tex> E^{**} </tex>. | Тогда само <tex> F </tex> отображает <tex> E </tex> в <tex> E^{**} </tex>. | ||
Строка 28: | Строка 28: | ||
<tex> | F_{x_0} (f_0) | = f_0 (x_0) = \| x_0 \|, \| f_0 \| = 1 </tex>, потому получаем, что <tex> \| F_{x_0} \| \ge \| x_0 \| \implies \| F_{x_0} \| = \| x_0 \| </tex>. | <tex> | F_{x_0} (f_0) | = f_0 (x_0) = \| x_0 \|, \| f_0 \| = 1 </tex>, потому получаем, что <tex> \| F_{x_0} \| \ge \| x_0 \| \implies \| F_{x_0} \| = \| x_0 \| </tex>. | ||
− | Значит, получившееся преобразование <tex> x \mapsto F_x </tex> | + | Значит, получившееся преобразование <tex> x \mapsto F_x </tex> — изометрия, <tex> \| x \| = \| F_x \| </tex>, получили '''естественное вложение''' <tex> E </tex> в <tex> E^{**} </tex>. |
<tex> E </tex> называется '''рефлексивным''', если <tex> E </tex> будет совпадать с <tex> E^{**} </tex> при таком отображении. | <tex> E </tex> называется '''рефлексивным''', если <tex> E </tex> будет совпадать с <tex> E^{**} </tex> при таком отображении. | ||
Строка 34: | Строка 34: | ||
Например, гильбертово пространство <tex> H </tex> рефлексивно (следует из теоремы Рисса об общем виде линейного функционала). | Например, гильбертово пространство <tex> H </tex> рефлексивно (следует из теоремы Рисса об общем виде линейного функционала). | ||
− | <tex> C[0, 1] </tex> | + | <tex> C[0, 1] </tex> — не является рефлексивным. |
== Сопряженный оператор == | == Сопряженный оператор == |
Версия 19:34, 7 июня 2013
Все рассматриваемые далее пространства считаем Банаховыми.
Определение: |
Аналогично, — пространство, сопряженное к . | — множество линейных непрерывных функционалов над , его называют пространством, сопряженным к .
Содержание
Естественное вложение
Покажем, что между
и существует так называемый естественный изоморфизм, сохраняющий норму точки.Введем
следующим образом: .— функционал, заданный на , то есть .
Тогда само
отображает в .линейно: .
, откуда .
С другой стороны, по теореме Хана-Банаха,
, что выполняются два условия:- .
, потому получаем, что .
Значит, получившееся преобразование
— изометрия, , получили естественное вложение в .называется рефлексивным, если будет совпадать с при таком отображении.
Например, гильбертово пространство
рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).— не является рефлексивным.
Сопряженный оператор
Пусть оператор
действует из в , и функционал принадлежит .Рассмотрим
.Получили новый функционал
, принадлежащий . .. — сопряженный оператор к .
Теорема: |
Если — линейный ограниченный оператор, то . |
Доказательство: |
Возьмем .. Получили, что , откуда .Для доказательства в обратную сторону используем теорему Хана-Банаха: По определению нормы: ., по теореме Хана-Банаха подберем . . . Соединяя эти два неравенства, получаем, что Устремляя . к нулю, получаем, что , и, окончательно, . |
Примеры сопряженных операторов
Возьмем любое гильбертово пространство
, .по теореме Рисса об общем виде линейного функционала в существует .
Поскольку также является линейным функционалом , то , где не зависит от .
Имеем отображение
, тогда , и окончательно:.
В гильбертовом пространстве
сопряженный оператор — тот оператор, который позволяет писать равенство выше.
Определение: |
Оператор | называется самосопряженным, если
В случае (частный случай ) оператор представляет собой матрицу размером . Сопряженный к оператор получается транспонированием соответствующей матрицы: . Для симметричной матрицы получается , то есть, если — симметричная матрица, то — самосопряженный оператор.
Рассмотрим теперь пространство
.Пусть
— непрерывная функция на , .Интегральный оператор
, действующий из в определяется так: . .Построим сопряженный оператор:
По теореме об общем виде линейного функционала в TODO: ее у нас в курсе не было. КАК НЕ БЫЛО-ТО???777 НИЧЕГО ШТО ЭТО ГИЛЬБЕРТОВО ПРОСТРАНСТВО!!?? -- Вот только , не совсем гильбертово, ага? ( )
, где ( и называются сопряженными показателями).
.
(по теореме Фубини поменяем порядок интегрирования)
Получили, что
. Обозначим , тогда , аналогично .— интегральный оператор из , имеющий ядро . В частности, если ядро симметрично ( ), и , то
Ортогональное дополнение
Важное значение имеет ортогональное дополнение (в любом нормированном пространстве):
— НП, .
— ортогональное дополнение .
Аналогично определяется для
.Утверждение: |
. |
Оба включения очевидны по определению. В обратную сторону:Пусть , тогдаПредположим, что Второе включение в обратную сторону доказывается аналогично. , тогда по теореме Хана-Банаха, , получили противоречие, что . |
Теоремы о множестве значений оператора
TODO: придумать нормальный заголовок <wikitex> Следующие две теоремы — условие разрешимости операторных уравнений. Смысл: $Ax = y$, $y$ — дано, то ответ на вопрос, есть ли решение, состоит в проверке $y \in R(A)$, но можно ограничиться $R(A) = \operatorname{Cl} R(A) \implies R(A) = (\operatorname{Ker}A^*)^\bot$, сопряженный оператор можно построить, ядро поддается конструктивному описанию: $y \in R(A) \Leftrightarrow y \perp \operatorname{Ker} A^*$.
Например, $A: \mathbb{R}^m \to \mathrm{R}^n$, $A^* = A^\top : \mathrm{R}^n \to \mathrm{R}^m$. $R(A) = \operatorname{Cl} R(A)$, $Ax = y$, $y$ — дано. Надо смотреть $y \perp \operatorname{Ker} A^*$, то есть $A^\top y = 0$.
Далее введем класс бесконечномерных параметров, для которых $R(A)$ — замкнуто, в частности, в этот класс входят интегральные операторы.
Теорема 1
Теорема: |
. |
Доказательство: |
TODO: написать доказательство $\varphi \in \operatorname{Ker}A^*$, $A^* \varphi = 0$, $\forall x \in E: A^*(\varphi, x) = 0, A^*(\varphi, x) = \varphi(A x) \implies \varphi(A x) = 0$ $y \in R(A) \implies y = Ax, \varphi \in \operatorname{Ker} A^* \implies \varphi y = \varphi(A x) = 0 \implies R(A) \subset (\operatorname A^*)^\perp$ $y \in \operatorname{Cl} R(A), y = \lim y_n, y_n \in R(A), \varphi \in \operatorname {Ker}^* (A)$ $\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp$ $\implies y \in (\operatorname{Ker} A^*)^\perp \implies(?) y \in \operatorname{Cl}(R(A))$
|
Теорема 2
Теорема: |
. |
Доказательство: |
TODO: написать доказательство |
</wikitex>