Компактный оператор — различия между версиями
(→Пример) |
Sementry (обсуждение | вклад) м (→Пример) |
||
| Строка 24: | Строка 24: | ||
<tex> \| A x \| \leq M \cdot \| x \| </tex> | <tex> \| A x \| \leq M \cdot \| x \| </tex> | ||
| + | |||
| + | Проверим, что реализуются условия теоремы Арцела-Асколи {{TODO|t=которой у нас не было}} о предкомпактности множества в <tex> C[a, b] </tex>: | ||
<tex> T \subset C[0,1] </tex> — относительно компактное <tex>\iff</tex> | <tex> T \subset C[0,1] </tex> — относительно компактное <tex>\iff</tex> | ||
| Строка 31: | Строка 33: | ||
Рассмотрим <tex>V = \{ x \mid \|x\| \le 1\}</tex> и <tex>A(V)</tex>. | Рассмотрим <tex>V = \{ x \mid \|x\| \le 1\}</tex> и <tex>A(V)</tex>. | ||
| − | + | <tex>\|K(u, z)\| \le M, \|A(x)\| \le M\|x\|, x \in V, \|x\| \le 1 </tex> | |
| + | |||
| + | <tex>\|Ax\| \le M</tex> | ||
| + | |||
| + | <tex>|A(x, t'') - A(x, t')| = |\int\limits_0^1 (K(t'', s) - K(t', s)) x(s) ds|</tex> | ||
| + | |||
| + | <tex>K(u, z)</tex> непрерывна на компакте <tex>[0, 1] \times [0, 1]</tex>, следовательно, равномерно непрерывна на нем. | ||
| + | |||
| + | Отсюда, <tex>\forall \varepsilon > 0 \exists \delta > 0: |t'' - t'| < \delta \implies |K(t'', s) - K(t', s)| < \varepsilon \forall s \in [0, 1]</tex>. | ||
| + | |||
| + | Таким образом, <tex>|A(x, t'') - A(x, t')| \le \varepsilon |x(s)| ds \le \varepsilon \|x\| < \varepsilon</tex>, получили равностепенную непрерывность <tex>A</tex>. | ||
== Критерий проверки компактности == | == Критерий проверки компактности == | ||
Версия 13:32, 9 июня 2013
Напоминание: все рассматриваемые пространства считаем Банаховыми.
| Определение: |
| Множество называется относительно компактным (предкомпактным), если его замыкание компактно |
| Определение: |
| Линейный ограниченный оператор называется компактным, если переводит любое ограниченное множество из в относительно компактное множество из . |
Из определения ясно, что мы получаем усиление ограниченности, так как любое относительно компактное множество — ограничено.
Пример
Рассмотрим пространство . Пусть — непрерывно на и ограничено: .
Введем оператор как , где .
Зададим норму
Проверим, что реализуются условия теоремы Арцела-Асколи TODO: которой у нас не было о предкомпактности множества в :
— относительно компактное
- — равностепенная непрерывность.
Рассмотрим и .
непрерывна на компакте , следовательно, равномерно непрерывна на нем.
Отсюда, .
Таким образом, , получили равностепенную непрерывность .
Критерий проверки компактности
Замечание: в бесконечномерном пространстве шар не будет компактом (следствие из теоремы Рисса о почти перпендикуляре), следовательно, — не компактен.
Для определения компактности используется критерий Хаусдорфа: множество компактно тогда и только тогда, когда оно замкнуто и вполне ограниченно, то есть у него существует конечная -сеть.
Произведение компактных операторов
| Утверждение: |
, (произведение, суперпозиция). Тогда:
|
|
<wikitex>Докажем первый случай, второй доказывается аналогично. Рассмотрим единичный шар $V = \{ x \mid \ |
| Утверждение (следствие): |
Если — компактный оператор, то он не может быть непрерывно обратимым. |
| От противного: пусть — компактный по доказанному утверждению, что невозможно в бесконечномерном случае. |
| Утверждение: |
— компактный — сепарабельно, то есть в существует всюду плотное подмножество. |
|
— счетное объединение шаров.
— относительно компактно. Используя теорему Хаусдорфа можно показать, что любое относительно компактное множество сепарабельно: объединение -сетей для от до счетно и оно будет всюду плотным в этом множестве. Счетное объединение сепарабельных множеств — сепарабельно, значит — сепарабельно. |