Базис Шаудера — различия между версиями
Строка 39: | Строка 39: | ||
# <tex>\|A_2\| < \varepsilon</tex> | # <tex>\|A_2\| < \varepsilon</tex> | ||
|proof= | |proof= | ||
+ | В полученном выше соотношении <tex>\|\alpha\| \le C \|x\|</tex>, раскроем нормы: <tex>\sup\limits_n\| \sum\limits_{i=1}^n \alpha_n e_n \| \le C \| \sum\limits_{n=1}^\infty \alpha_n e_n \|</tex>, а значит, <tex> \forall n: \|\sum\limits_{i=1}^n \alpha_n e_n \| \le C \| \sum\limits_{n=1}^\infty \alpha_n e_n \|</tex> | ||
− | + | Для каждого <tex>n</tex>, определим на элементах <tex>X</tex> два оператора: <tex>S_n(x) = \sum\limits_{i=1}^n \alpha_i e_i</tex> и <tex>R_n(x) = \sum\limits_{i=n+1}^\infty \alpha_i e_i</tex>. | |
− | |||
− | |||
По выше полученным неравенствам, <tex>\|S_n(x)\| \le C \|x\|</tex>, то есть нормы всех <tex>S_n</tex> ограничены числом <tex>C</tex>. | По выше полученным неравенствам, <tex>\|S_n(x)\| \le C \|x\|</tex>, то есть нормы всех <tex>S_n</tex> ограничены числом <tex>C</tex>. |
Версия 11:24, 10 июня 2013
Выясним структуру компактного оператора в специальном случае — когда
имеет базис Шаудера.
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в
есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.Так как ряд сходится,
можно превратить в НП, определив норму как .Утверждение: |
Пространство относительно этой нормы — Банахово. |
TODO: доказать, доказательство есть в Люстернике-Соболеве |
TODO: разбить то, что идет далее, на набор утверждений и теорем
Определим биективный линейный оператор
как .Покажем, что он ограничен:
, то есть .Так как теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
и — банаховы, поТеорема (почти конечномерность компактного оператора): |
Итак, если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух операторов: такое, что:
|
Доказательство: |
В полученном выше соотношении , раскроем нормы: , а значит,Для каждого , определим на элементах два оператора: и .По выше полученным неравенствам, , то есть нормы всех ограничены числом .Запишем оператор как , тогда , .Это значит, что нормы всех остаточных операторов ограничены числом .Пусть — компактный.. . , то есть, — конечномерный оператор. Проверим, что :Для любого , и .— относительно компактно в , следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда .Значит, .— единичный шар в , — компактно. Получили на , так как на . , то есть, . |