Базис Шаудера — различия между версиями
м (Каждый раз, когда кто-нибудь не ставит \left и \right, в мире умирает десяток котят) |
(Начал доказательство банаховости координатного пространства) |
||
Строка 17: | Строка 17: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Пространство <tex> F </tex> относительно этой нормы — | + | Пространство <tex> F </tex> относительно этой нормы — банахово. |
|proof= | |proof= | ||
− | {{ | + | Пусть дана последовательность <tex>y_k \in F</tex> (за <tex>y_k^i</tex> обозначаем <tex>i</tex>-ый элемент <tex>k</tex>-ой последовательности), |
+ | которая сходится в себе, то есть | ||
+ | <tex>\| y_m - y_k \| = \sup\limits_n \left\| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| < \varepsilon</tex> при <tex>m, k \ge N(\varepsilon)</tex> | ||
+ | |||
+ | Рассмотрим последовательность <tex>y_k^i</tex> при фиксированном <tex>i</tex>, докажем, что эта последовательность сходится: | ||
+ | <tex>| y_m^n - y_k^n | \| e_n \| = \| (y_m^n - y_k^n) e_n \| = \left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i - \sum\limits_{i = 1}^{n - 1} (y_m^i - y_k^i) e_i \right \| \le</tex> | ||
+ | <tex>\left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| + \left \| \sum\limits_{i = 1}^{n - 1} (y_m^i - y_k^i) e_i \right \| \le | ||
+ | 2 \sup\limits_n \left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| < 2 \varepsilon</tex> при <tex>m, k > N(\varepsilon)</tex> | ||
+ | |||
+ | Рассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к <tex>z^k</tex>, докажем, что <tex>z</tex> является пределом последовательности <tex>y_i</tex>. {{TODO|t=Coming soon...}} | ||
}} | }} | ||
Версия 20:00, 10 июня 2013
Выясним структуру компактного оператора в специальном случае — когда
имеет базис Шаудера.
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в
есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.Так как ряд сходится,
можно превратить в НП, определив норму как .Утверждение: |
Пространство относительно этой нормы — банахово. |
Пусть дана последовательность (за обозначаем -ый элемент -ой последовательности), которая сходится в себе, то есть приРассмотрим последовательность при фиксированном , докажем, что эта последовательность сходится: приРассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к , докажем, что является пределом последовательности . TODO: Coming soon... |
Определим биективный линейный оператор
как .Покажем, что он ограничен:
, то есть .Так как теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
и — банаховы, поТеорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
Доказательство: |
В полученном выше соотношении , раскроем нормы: , а значит,Для каждого , определим на элементах два оператора: и .По выше полученным неравенствам, , то есть нормы всех ограничены числом .Запишем оператор как , тогда , .Это значит, что нормы всех остаточных операторов ограничены числом .Пусть — компактный.. , то есть, для всех , — конечномерный оператор. Докажем теперь вторую часть теоремы: покажем, что для всех найдется такое, что .Рассмотрим — единичный шар в , — относительно компактно, следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда .Значит, .на , так как на . Получили В итогде, примем , то есть, . , . и компактны как композиция компактного и огранниченного оператора. |