Базис Шаудера — различия между версиями
(Начал доказательство банаховости координатного пространства) |
м (\alpha-conversion) |
||
| Строка 28: | Строка 28: | ||
2 \sup\limits_n \left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| < 2 \varepsilon</tex> при <tex>m, k > N(\varepsilon)</tex> | 2 \sup\limits_n \left \| \sum\limits_{i = 1}^n (y_m^i - y_k^i) e_i \right \| < 2 \varepsilon</tex> при <tex>m, k > N(\varepsilon)</tex> | ||
| − | Рассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к <tex>z^ | + | Рассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к <tex>z^n</tex>, докажем, что <tex>z</tex> является пределом последовательности <tex>y_i</tex>. {{TODO|t=Coming soon...}} |
}} | }} | ||
Версия 21:10, 10 июня 2013
Выясним структуру компактного оператора в специальном случае — когда имеет базис Шаудера.
| Определение: |
| Базисом Шаудера в банаховом пространстве называется множество его элементов такое, что у любого в существует единственное разложение . |
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.
Так как ряд сходится, можно превратить в НП, определив норму как .
| Утверждение: |
Пространство относительно этой нормы — банахово. |
|
Пусть дана последовательность (за обозначаем -ый элемент -ой последовательности), которая сходится в себе, то есть при Рассмотрим последовательность при фиксированном , докажем, что эта последовательность сходится: при Рассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к , докажем, что является пределом последовательности . TODO: Coming soon... |
Определим биективный линейный оператор как .
Покажем, что он ограничен: , то есть .
Так как и — банаховы, по теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
| Теорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
| Доказательство: |
|
В полученном выше соотношении , раскроем нормы: , а значит, Для каждого , определим на элементах два оператора: и . По выше полученным неравенствам, , то есть нормы всех ограничены числом . Запишем оператор как , тогда , . Это значит, что нормы всех остаточных операторов ограничены числом . Пусть — компактный. . , то есть, для всех , — конечномерный оператор. Докажем теперь вторую часть теоремы: покажем, что для всех найдется такое, что . Рассмотрим — единичный шар в , — относительно компактно, следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда . Значит, . на , так как на . Получили , то есть, . В итогде, примем , . и компактны как композиция компактного и огранниченного оператора. |