Базис Шаудера — различия между версиями
Строка 33: | Строка 33: | ||
<tex>\left \| \sum\limits_{i = n}^{n + p} z^i e_i \right \| \le \left \| \sum\limits_{i = 1}^{n - 1} (z^i - y_m^i) e_i \right \| + \left \| \sum\limits_{i = 1}^{n + p} (z^i - y_m^i) e_i \right \| + \left \| \sum\limits_{i = n}^{n + p} y_m^i e_i \right \|</tex> <tex>\le \left \| \sum\limits_{i = n}^{n + p} y_m^i e_i \right \| + 2\varepsilon</tex> | <tex>\left \| \sum\limits_{i = n}^{n + p} z^i e_i \right \| \le \left \| \sum\limits_{i = 1}^{n - 1} (z^i - y_m^i) e_i \right \| + \left \| \sum\limits_{i = 1}^{n + p} (z^i - y_m^i) e_i \right \| + \left \| \sum\limits_{i = n}^{n + p} y_m^i e_i \right \|</tex> <tex>\le \left \| \sum\limits_{i = n}^{n + p} y_m^i e_i \right \| + 2\varepsilon</tex> | ||
+ | |||
+ | Пусть дано произвольное <tex>\delta</tex>, выберем <tex>\varepsilon < \delta/4</tex> и <tex>N(\varepsilon)</tex>, такое, что при <tex>m > N</tex> выполняется неравенство, полученное выше. Зафиксируем такое конкретное <tex>m > N</tex>, и выберем <tex>n_0</tex> при котором для любого <tex>n \ge n_0</tex>, <tex>p > 0</tex> выполняется <tex>\left \| \sum\limits_{i = n}^{n + p} y_m^i e_i \right \| < \delta/2</tex>, что возможно в силу сходимости ряда <tex>\sum y_m^i e_i</tex>. | ||
+ | |||
+ | Итого, для произвольного <tex>\delta</tex> мы получили такое <tex>n_0(\delta)</tex>, что при <tex>n \ge n_0</tex>, <tex>p > 0</tex> выполняется <tex>\left \| \sum\limits_{i = n}^{n + p} z^i e_i \right \| < \delta</tex>, следовательно, ряд <tex>\left \| \sum z^i e_i \right \|</tex> сходится и <tex>z \in F</tex> | ||
{{TODO|t=Work in progress}} | {{TODO|t=Work in progress}} |
Версия 22:08, 11 июня 2013
Выясним структуру компактного оператора в специальном случае — когда
имеет базис Шаудера.
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в
есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.Так как ряд сходится,
можно превратить в НП, определив норму как .Утверждение: |
Пространство относительно этой нормы — банахово. |
Пусть дана последовательность (за обозначаем -ый элемент -ой последовательности), которая сходится в себе, то есть приРассмотрим последовательность при фиксированном , докажем, что эта последовательность сходится: приРассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к , докажем, что является пределом последовательности . Для начала нужно доказать, что , то есть, что .В неравенстве можно перейти к пределу , получая . Далее, рассмотрим следующую сумму: . Используя равенство , получаем следующее неравенство:
Пусть дано произвольное , выберем и , такое, что при выполняется неравенство, полученное выше. Зафиксируем такое конкретное , и выберем при котором для любого , выполняется , что возможно в силу сходимости ряда .Итого, для произвольного мы получили такое , что при , выполняется , следовательно, ряд сходится и
|
Определим биективный линейный оператор
как .Покажем, что он ограничен:
, то есть .Так как теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
и — банаховы, поТеорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
Доказательство: |
В полученном выше соотношении , раскроем нормы: , а значит,Для каждого , определим на элементах два оператора: и .По выше полученным неравенствам, , то есть нормы всех ограничены числом .Запишем оператор как , тогда , .Это значит, что нормы всех остаточных операторов ограничены числом .Пусть — компактный.. , то есть, для всех , — конечномерный оператор. Докажем теперь вторую часть теоремы: покажем, что для всех найдется такое, что .Рассмотрим — единичный шар в , — относительно компактно, следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда .Значит, .на , так как на . Получили В итоге, примем , то есть, . , . и компактны как композиция компактного и огранниченного оператора. |