Базис Шаудера — различия между версиями
Komarov (обсуждение | вклад) м |
Rybak (обсуждение | вклад) (ссылка НП) |
||
Строка 13: | Строка 13: | ||
Пусть в <tex>X</tex> есть базис Шаудера, тогда между <tex>x = \sum\limits_{n=1}^\infty \alpha_k e_k</tex> и <tex>(\alpha_1 \dots \alpha_n \dots)</tex> — бесконечными последовательностями есть биекция. Определим <tex>F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}</tex> — это линейное пространство. | Пусть в <tex>X</tex> есть базис Шаудера, тогда между <tex>x = \sum\limits_{n=1}^\infty \alpha_k e_k</tex> и <tex>(\alpha_1 \dots \alpha_n \dots)</tex> — бесконечными последовательностями есть биекция. Определим <tex>F = \{(\alpha_1 \dots \alpha_n\dots) \mid \exists x \in X: \sum\limits_{n=1}^\infty \alpha_n e_n \to x \}</tex> — это линейное пространство. | ||
− | Так как ряд сходится, <tex>F</tex> можно превратить в НП, определив норму как <tex>\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|</tex>. | + | Так как ряд сходится, <tex>F</tex> можно превратить в [[Нормированные пространства|НП]], определив норму как <tex>\| \alpha \| = \sup\limits_n \left\| \sum\limits_{i=1}^n \alpha_i e_i\right\|</tex>. |
{{Утверждение | {{Утверждение |
Версия 12:37, 12 июня 2013
Выясним структуру компактного оператора в специальном случае — когда
имеет базис Шаудера.
Определение: |
Базисом Шаудера в банаховом пространстве | называется множество его элементов такое, что у любого в существует единственное разложение .
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в
есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.Так как ряд сходится, НП, определив норму как .
можно превратить вУтверждение: |
Пространство относительно этой нормы — банахово. |
TODO: Далее приведено доказательство полноты, но нужно также доказать, что — линейное пространство, и что заданная норма удовлетворяет аксиомам, что оставляется читателю в качестве упражнения Пусть дана последовательность (за обозначаем -ый элемент -ой последовательности), которая сходится в себе, то есть приРассмотрим последовательность при фиксированном , докажем, что эта последовательность сходится: приРассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к , докажем, что является пределом последовательности . Для начала нужно доказать, что , то есть, что .В неравенстве можно перейти к пределу , получая . Далее, рассмотрим следующую сумму: . Используя равенство , получаем следующее неравенство:
Пусть дано произвольное , выберем и , такое, что при выполняется неравенство, полученное выше. Зафиксируем такое конкретное , и выберем при котором для любого , выполняется , что возможно в силу сходимости ряда .Итого, для произвольного Полученное ранее неравенство мы получили такое , что при , выполняется , следовательно, ряд сходится и . верно для любого и при , то верно и неравенство , то есть, является пределом последовательности . |
Определим биективный линейный оператор
как .Покажем, что он ограничен:
, то есть .Так как теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
и — банаховы, поТеорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
Доказательство: |
В полученном выше соотношении , раскроем нормы: , а значит,Для каждого , определим на элементах два оператора: и .По выше полученным неравенствам, , то есть нормы всех ограничены числом .Запишем оператор как , тогда , .Это значит, что нормы всех остаточных операторов ограничены числом .Пусть — компактный.. , то есть, для всех , — конечномерный оператор. Докажем теперь вторую часть теоремы: покажем, что для всех найдется такое, что .Рассмотрим — единичный шар в , — относительно компактно, следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда .Значит, .на , так как на (из ограниченности непрерывности и ). Получили В итоге, примем , то есть, . , . и компактны как композиция компактного и огранниченного оператора. |