Алгоритм Балабана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(add picture)
Строка 24: Строка 24:
 
}}
 
}}
  
Два отрезка <tex>s_1</tex> и <tex>s_2</tex> называются пересекающимися внутри полосы <tex>\langle a, b \rangle</tex>, если их точка пересечения лежит в пределах этой полосы. <br>
+
{{Определение
 +
|definition=
 +
Два отрезка <tex>s_1</tex> и <tex>s_2</tex> называются ''пересекающимися внутри'' полосы <tex>\langle a, b \rangle</tex>, если их точка пересечения лежит в пределах этой полосы.<br>
 +
 
 
Для двух множеств отрезков <tex>S</tex> и <tex>S'</tex> определим множество <tex>Int(S, S')</tex> как <tex>\{ {s, s'} | (s \in S, s' \in S') \& (s \ intersect \ s') \}</tex>.
 
Для двух множеств отрезков <tex>S</tex> и <tex>S'</tex> определим множество <tex>Int(S, S')</tex> как <tex>\{ {s, s'} | (s \in S, s' \in S') \& (s \ intersect \ s') \}</tex>.
 +
}}
 +
[[Файл:Balaban_pic_1.png|350px|thumb|right|<tex>D = ((s_1, s_2, s_3), \langle a, b \rangle)</tex>, <tex>Loc(D, s_4) = 0</tex>, <tex>Loc(D, s_5) = 2</tex> или <tex>3</tex>, <tex>Int(D, \{s_4,\ s_5\}) = \{\{s_3,\ s_5\}\}</tex>]]
  
 
Обозначения <tex>Int_{a, b}(S)</tex> и <tex>Int_{a, b}(S, S')</tex> будут использоваться для описания подмножеств <tex>Int(S)</tex> и <tex>Int(S, S')</tex>, состоящих из пересекающихся пар отрезков в пределах полосы <tex>\langle a, b \rangle</tex>. Далее скобки <tex>\{\}</tex> используются для определения неупорядоченных наборов, а скобки <tex>()</tex> используются для определения упорядоченных множеств.
 
Обозначения <tex>Int_{a, b}(S)</tex> и <tex>Int_{a, b}(S, S')</tex> будут использоваться для описания подмножеств <tex>Int(S)</tex> и <tex>Int(S, S')</tex>, состоящих из пересекающихся пар отрезков в пределах полосы <tex>\langle a, b \rangle</tex>. Далее скобки <tex>\{\}</tex> используются для определения неупорядоченных наборов, а скобки <tex>()</tex> используются для определения упорядоченных множеств.
Строка 33: Строка 38:
  
 
{{Определение
 
{{Определение
 +
|neat=neat
 
|definition=
 
|definition=
''Лестница'' <tex>D</tex> — это пара <tex>(Q, \langle a, b \rangle)</tex>, в которой отрезки <tex>Q</tex> удовлетворяют следующим условиям :  
+
''Лестница'' <tex>D</tex> — это пара <tex>(Q, \langle a, b \rangle)</tex>, в которой отрезки из множества <tex>Q</tex> удовлетворяют следующим условиям :  
 
− любой отрезок из <tex>Q</tex> содержит полосу <tex>\langle a, b \rangle</tex>; <br>
 
− любой отрезок из <tex>Q</tex> содержит полосу <tex>\langle a, b \rangle</tex>; <br>
 
− нет пересечений отрезков внутри лестницы; <br>
 
− нет пересечений отрезков внутри лестницы; <br>
 
− <tex>Q</tex> упорядочена по отношению <tex><_a</tex>.
 
− <tex>Q</tex> упорядочена по отношению <tex><_a</tex>.
 +
 +
Часть отрезков лестницы внутри полосы будем называть '''ступеньками'''.
 +
}}
 +
 +
{{Определение
 +
|definition=
 +
Если точка <tex>p</tex> отрезка <tex>s</tex> лежит между ступеньками <tex>i</tex> и <tex>i + 1</tex>, тогда число <tex>i</tex> называется ''местоположением'' <tex>s</tex> на лестнице <tex>D</tex> и обозначается как <tex>Loc(D, s)</tex>
 
}}
 
}}
  
Часть отрезков лестницы внутри полосы будем называть '''ступеньками'''.
+
{{Утверждение
 +
|statement=
 +
Имея лестницу <tex>D = (Q, \langle a, b \rangle)</tex> и множество отрезков <tex>S</tex>, множество <tex>Int(D, S)</tex> можно найти за время <tex>O(|S| log|Q| + |Int(D, S)|)</tex>. <br>
 +
Однако, если <tex>S’</tex> упорядочено отношением <tex><_x</tex>, где <tex>x \in [a, b]</tex>, тогда можно найти <tex>Int(D, S)</tex> за время <tex>O(|S| + |Q| + |Int(D, S)|)</tex>.
 +
}}
  
 
==Алгоритм==
 
==Алгоритм==

Версия 11:28, 1 октября 2013

Эта статья находится в разработке!

Алгоритм Балабана — детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются.

Введение

Решение задачи по поиску множества пересечений отрезков является одной из главных задач вычислительной геометрии. Тривиальный детерминированный алгоритм имеет временную сложность [math]O(n^2)[/math], и его суть заключается в проверке попарного пересечения отрезков. Сложнее, но эффективнее алгоритм Бентли-Оттмана [1] с оценкой сложности [math]O((n + k)\ log(n)+k)[/math], в основе которого лежит метод заметающей прямой. Алгоритм, предложенный Чазелле и Едельсбруннером [2], имеет лучшую оценку [math]O(n\ log(n) + k)[/math], но в отличие от предыдущих методов требует квадратичной памяти. Оптимальный детерминированный алгоритм был предложен Балабаном [3] с временной оценкой сложности [math]O(n\ log(n) + k)[/math] и [math]O(n)[/math] памяти, где К - число пересекающихся отрезков. При количестве отрезков равным 2000 и большому количеству пересечений целесообразно использовать алгоритм Балабана. Однако в результате громоздкости и высокой сложности реализации алгоритма в большинстве практических задач используется алгоритм заметающей прямой Бентли-Оттмана.

Основные понятия

Введем некоторые обозначения. Пусть [math]Int(S)[/math] - множество всех точек пересечения отрезков из множества [math]S[/math], а [math]K = |Int(S)|[/math] - количество таких пересечений ;
Через [math]\langle a, b \rangle[/math] обозначим вертикальную полосу, которая ограничена прямыми [math]x = a[/math] и [math]x = b[/math], а через [math]s[/math] отрезок с концами абсцисс [math]l[/math] и [math]r[/math].
Рассмотрим взаимное расположение вертикальной полосы [math]\langle a, b \rangle[/math] и отрезка [math]s[/math].


Определение:
Будем говорить, что отрезок [math]s[/math], с концами абсцисс [math]l[/math] и [math]r[/math] :

- содержит(span) полосу [math]\langle a, b \rangle[/math], если [math]l \le a \le b \le r[/math];
- внутренний(inner) для полосы [math]\langle a, b \rangle[/math], если [math]a \lt l \lt r \lt b[/math];

- пересекает(cross) полосу [math]\langle a, b \rangle[/math] в других случаях.


Определение:
Два отрезка [math]s_1[/math] и [math]s_2[/math] называются пересекающимися внутри полосы [math]\langle a, b \rangle[/math], если их точка пересечения лежит в пределах этой полосы.
Для двух множеств отрезков [math]S[/math] и [math]S'[/math] определим множество [math]Int(S, S')[/math] как [math]\{ {s, s'} | (s \in S, s' \in S') \& (s \ intersect \ s') \}[/math].
[math]D = ((s_1, s_2, s_3), \langle a, b \rangle)[/math], [math]Loc(D, s_4) = 0[/math], [math]Loc(D, s_5) = 2[/math] или [math]3[/math], [math]Int(D, \{s_4,\ s_5\}) = \{\{s_3,\ s_5\}\}[/math]

Обозначения [math]Int_{a, b}(S)[/math] и [math]Int_{a, b}(S, S')[/math] будут использоваться для описания подмножеств [math]Int(S)[/math] и [math]Int(S, S')[/math], состоящих из пересекающихся пар отрезков в пределах полосы [math]\langle a, b \rangle[/math]. Далее скобки [math]\{\}[/math] используются для определения неупорядоченных наборов, а скобки [math]()[/math] используются для определения упорядоченных множеств.

Введем отношение порядка на множестве отрезков [math]s_1 \lt _b s_2[/math] если оба отрезка пересекают вертикальную линию [math]x = a[/math] и точка пересечения этой прямой с отрезком [math]s_1[/math] лежит ниже точки пересечения с [math]s_2[/math].


Определение:
Лестница [math]D[/math] — это пара [math](Q, \langle a, b \rangle)[/math], в которой отрезки из множества [math]Q[/math] удовлетворяют следующим условиям :

− любой отрезок из [math]Q[/math] содержит полосу [math]\langle a, b \rangle[/math];
− нет пересечений отрезков внутри лестницы;
[math]Q[/math] упорядочена по отношению [math]\lt _a[/math].

Часть отрезков лестницы внутри полосы будем называть ступеньками.


Определение:
Если точка [math]p[/math] отрезка [math]s[/math] лежит между ступеньками [math]i[/math] и [math]i + 1[/math], тогда число [math]i[/math] называется местоположением [math]s[/math] на лестнице [math]D[/math] и обозначается как [math]Loc(D, s)[/math]


Утверждение:
Имея лестницу [math]D = (Q, \langle a, b \rangle)[/math] и множество отрезков [math]S[/math], множество [math]Int(D, S)[/math] можно найти за время [math]O(|S| log|Q| + |Int(D, S)|)[/math].
Однако, если [math]S’[/math] упорядочено отношением [math]\lt _x[/math], где [math]x \in [a, b][/math], тогда можно найти [math]Int(D, S)[/math] за время [math]O(|S| + |Q| + |Int(D, S)|)[/math].

Алгоритм

Примечания

Литература

Т.Вознюк, В.Терещенко — К построению эффективного решения задачи пересечения отрезков
Ф.Препарата, М.Шеймос — Вычислительная геометрия