Коды Прюфера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 25: Строка 25:
 
Кодирование Прюфера задаёт биекцию между множествами помеченных деревьев порядка <math>n</math> и последовательностями длиной <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex>  
 
Кодирование Прюфера задаёт биекцию между множествами помеченных деревьев порядка <math>n</math> и последовательностями длиной <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex>  
 
|proof=
 
|proof=
1. Каждому помеченному дереву соотвествует последовательность и только одна - Верно по построению кода.
+
1. Каждому помеченному дереву соотвествует последовательность и только одна. Это верно по построению кода.
 
+
<br>
2. Каждой последовательности соотвествует помеченное дерево и только одно - Верно по предыдущей лемме, т.к. восстанавливали мы однозначно.
+
2. Каждой последовательности соотвествует помеченное дерево и только одно. Это верно по предыдущей лемме, т.к. восстанавливали мы однозначно.
 +
<br>
 +
Значит, это биекция - по определению.
 
}}
 
}}
 
Следствием из этой теоремы является [[Количество помеченных деревьев|теорема Кэли]].
 
Следствием из этой теоремы является [[Количество помеченных деревьев|теорема Кэли]].

Версия 21:58, 8 октября 2010

Коды Прюфера.

Кодирование Прюфера переводит помеченные деревья порядка n в последовательность чисел от 1 до n по алгоритму:

 Пока количество вершин [math]\gt 1[/math] {
   1. Выбирается лист с минимальным номером.
   2. В последовательность Прюфера добавляется номер смежной вершины.
   3. Лист и инцидентное ребро удаляются из дерева.
 }

Полученная последовательность и есть код Прюфера.

Лемма:
По любой последовательности длиной [math]n - 2[/math] из чисел от [math]1[/math] до [math]n[/math] можно построить помеченное дерево.
Доказательство:
[math]\triangleright[/math]

Доказательство по индукции. База. [math]n = 1[/math] - верно.
Переход [math]n \rightarrow n + 1[/math].
Пусть у нас есть последовательность: [math]A = [a_1, a_2, ..., a_{n - 2}].[/math]

Выберем минимальное число [math]v[/math] не лежащее в A. Это означает, что [math]v[/math] - вершина, которую мы удалили первой, а, значит, это лист. Соединяем [math]v[/math] и [math]a_1[/math] ребром. Т.к. [math]v[/math] - лист - он нам больше не помешает. Выкинем из последовательности [math]A[/math] - [math]a_1[/math] и применим предположение индукции.
[math]\triangleleft[/math]
Теорема:
Кодирование Прюфера задаёт биекцию между множествами помеченных деревьев порядка [math]n[/math] и последовательностями длиной [math]n - 2[/math] из чисел от [math]1[/math] до [math]n[/math]
Доказательство:
[math]\triangleright[/math]

1. Каждому помеченному дереву соотвествует последовательность и только одна. Это верно по построению кода.
2. Каждой последовательности соотвествует помеченное дерево и только одно. Это верно по предыдущей лемме, т.к. восстанавливали мы однозначно.

Значит, это биекция - по определению.
[math]\triangleleft[/math]

Следствием из этой теоремы является теорема Кэли.