Участник:Dgerasimov/Algebra — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «Taken from [http://en.wikipedia.org/wiki/Template:Group-like_structures] {| style="text-align:center" |- align="center" | style="border-bottom: 2px solid #303060"...»)
 
Строка 39: Строка 39:
 
|-
 
|-
 
| || colspan="5" | <small>**Each element of a [[Loop (algebra)|loop]] has a left and right inverse, but these need not coincide.</small>
 
| || colspan="5" | <small>**Each element of a [[Loop (algebra)|loop]] has a left and right inverse, but these need not coincide.</small>
 +
|}
 +
 +
 +
{| style="text-align:center"
 +
|- align="center"
 +
| style="border-bottom: 2px solid #303060" colspan=11| '''Ring-like structures'''
 +
|-
 +
! !! [[Magma]]* !! [[Semigroup]] !! [[Monoid]] !! [[Group]] !! [[Abelian Group]] !! [[Loop]] !! [[Quasigroup]] !! [[Groupoid]] !! [[Cathegory]] !! [[Semicathegory]]
 +
|-
 +
! [[Magma (algebra)|Magma]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Semigroup]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Monoid]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Group (mathematics)|Group]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Abelian Group]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Loop (algebra)|Loop]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Quasigroup]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Groupoid]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Category (mathematics)|Category]]
 +
| Y || N || N || N || N || N || N || N || N || N
 +
|-
 +
! [[Semicategory]]
 +
| Y || N || N || N || N || N || N || N || N || N
 
|}
 
|}

Версия 09:22, 6 ноября 2013

Taken from [1]

Group-like structures
Totality* Associativity Identity Inverses Commutativity
Magma Y N N N N
Semigroup Y Y N N N
Monoid Y Y Y N N
Group Y Y Y Y N
Abelian Group Y Y Y Y Y
Loop Y N Y Y** N
Quasigroup Y N N N N
Groupoid N Y Y Y N
Category N Y Y N N
Semicategory N Y N N N
*Closure, which is used in many sources to define group-like structures, is an equivalent axiom to totality, though defined differently.
**Each element of a loop has a left and right inverse, but these need not coincide.


Ring-like structures
Magma* Semigroup Monoid Group Abelian Group Loop Quasigroup Groupoid Cathegory Semicathegory
Magma Y N N N N N N N N N
Semigroup Y N N N N N N N N N
Monoid Y N N N N N N N N N
Group Y N N N N N N N N N
Abelian Group Y N N N N N N N N N
Loop Y N N N N N N N N N
Quasigroup Y N N N N N N N N N
Groupoid Y N N N N N N N N N
Category Y N N N N N N N N N
Semicategory Y N N N N N N N N N