Алгоритм Левита — различия между версиями
(→Сложность) |
|||
Строка 51: | Строка 51: | ||
<tex>M_0</tex>.add(u) | <tex>M_0</tex>.add(u) | ||
+ | |||
+ | == Доказательство == | ||
== Сложность == | == Сложность == |
Версия 11:50, 30 ноября 2013
Алгоритм Левита (Levit algorithm) находит расстояние от заданной вершины
до всех остальных. Позволяет работать с ребрами отрицательного веса при отсутствии отрицательных циклов.Алгоритм
Пусть
— текущая длина кратчайшего пути до вершины . Изначально, все элементы , кроме -го равны бесконечности; .Разделим вершины на три множества:
- — вершины, расстояние до которых уже вычислено (возможно, не окончательно)
- — вершины, расстояние до которых вычисляется. Это множество в свою очередь делится на два упорядоченных подмножества:
- — основная очередь
- — срочная очередь
- — вершины, расстояние до которых еще не вычислено
Изначально все вершины, кроме
помещаются в множество . Вершина помещается в множество (в любую из очередей).
Шаг алгоритма: выбирается вершина из . Если очередь не пуста, то вершина берется из нее, иначе из . Далее, для каждого ребра :
- если , то переводится в конец очереди . При этом (производится релаксация ребра )
- если , то происходит релаксация ребра
- если и , то происходит релаксация ребра и помещается в
В конце шага помещаем вершину
в множество .
Алгоритм заканчивает работу, когда множество становится пустым.
Псевдокод
for uV : .add(s) for u s V : .add(u) while and : if : u .pop() else : u .pop() for uv E : if v : .push(v) relax(uv, d) if v : relax(uv, d) if v and : .push(v) relax(uv, d) .add(u)
Доказательство
Сложность
См. также
Источники
- Алгоритм Левита - Википедия, свободная энциклопедия
- Алгоритм Левита - MAXimal::algo
- И. В. Романовский, Дискретный анализ, ISBN 5-7940-0138-0; 2008 г., стр. 228-234.